神经网络简介 (Introduction to Neural Networks)
神经网络是更复杂版本的特征组合。实质上,神经网络会学习适合您的相应特征组合。
学习目标
对神经网络有一定的了解,尤其是了解以下方面:- 隐藏层
- 激活函数
-------------------------------------------------------
特征组合这一单元的话,就会发现以下分类问题属于非线性问题:
图 1. 非线性分类问题。
“非线性”意味着您无法使用形式为
的模型准确预测标签。也就是说,“决策面”不是直线。之前,我们了解了对非线性问题进行建模的一种可行方法 - 特征组合。
现在,请考虑以下数据集:
图 2. 更难的非线性分类问题。
图 2 所示的数据集问题无法用线性模型解决。为了了解神经网络可以如何帮助解决非线性问题,我们首先用图表呈现一个线性模型:
为了了解神经网络可以如何帮助解决非线性问题,我们首先用图表呈现一个线性模型:
输入输出图 3. 用图表呈现的线性模型。
每个蓝色圆圈均表示一个输入特征,绿色圆圈表示各个输入的加权和。
要提高此模型处理非线性问题的能力,我们可以如何更改它
隐藏层
在下图所示的模型中,我们添加了一个表示中间值的“隐藏层”。隐藏层中的每个黄色节点均是蓝色输入节点值的加权和。输出是黄色节点的加权和。
图 4. 两层模型的图表。
此模型是线性的吗?是的,其输出仍是其输入的线性组合。
在下图所示的模型中,我们又添加了一个表示加权和的“隐藏层”。
图 5. 三层模型的图表。
此模型仍是线性的吗?是的,没错。当将输出表示为输入的函数并进行简化时,只是获得输入的另一个加权和而已。该加权和无法对图 2 中的非线性问题进行有效建模。
激活函数
要对非线性问题进行建模,我们可以直接引入非线性函数。我们可以用非线性函数将每个隐藏层节点像管道一样连接起来。
在下图所示的模型中,在隐藏层 1 中的各个节点的值传递到下一层进行加权求和之前,我们采用一个非线性函数对其进行了转换。这种非线性函数称为激活函数。
图 6. 包含激活函数的三层模型的图表。
现在,我们已经添加了激活函数,如果添加层,将会产生更多影响。通过在非线性上堆叠非线性,我们能够对输入和预测输出之间极其复杂的关系进行建模。简而言之,每一层均可通过原始输入有效学习更复杂、更高级别的函数。如果您想更直观地了解这一过程的工作原理,请参阅 Chris Olah 的精彩博文。
常见激活函数
以下 S 型激活函数将加权和转换为介于 0 和 1 之间的值。
曲线图如下:
图 7. S 型激活函数。
相较于 S 型函数等平滑函数,以下修正线性单元激活函数(简称为 ReLU)的效果通常要好一点,同时还非常易于计算。
ReLU 的优势在于它基于实证发现(可能由 ReLU 驱动),拥有更实用的响应范围。S 型函数的响应性在两端相对较快地减少。
图 8. ReLU 激活函数。
实际上,所有数学函数均可作为激活函数。假设 σ 表示我们的激活函数(ReLU、S 型函数等等)。因此,网络中节点的值由以下公式指定:
TensorFlow 为各种激活函数提供开箱即用型支持。但是,我们仍建议从 ReLU 着手。
总结
现在,我们的模型拥有了人们通常所说的“神经网络”的所有标准组件:
- 一组节点,类似于神经元,位于层中。
- 一组权重,表示每个神经网络层与其下方的层之间的关系。下方的层可能是另一个神经网络层,也可能是其他类型的层。
- 一组偏差,每个节点一个偏差。
- 一个激活函数,对层中每个节点的输出进行转换。不同的层可能拥有不同的激活函数。
警告:神经网络不一定始终比特征组合好,但它确实可以提供适用于很多情形的灵活替代方案。
-------------------------------------------------------
以上整理转载在谷歌出品的机器学习速成课程点击打开链接 侵删!