haima1998
码龄9年
  • 3,182,093
    被访问
  • 245
    原创
  • 85,111
    排名
  • 880
    粉丝
  • 14
    铁粉
关注
提问 私信
  • 加入CSDN时间: 2013-01-17
博客简介:

haima1998的专栏

查看详细资料
  • 6
    领奖
    总分 2,290 当月 20
个人成就
  • 获得632次点赞
  • 内容获得112次评论
  • 获得3,050次收藏
创作历程
  • 2篇
    2022年
  • 79篇
    2021年
  • 161篇
    2020年
  • 147篇
    2019年
  • 179篇
    2018年
  • 182篇
    2017年
  • 80篇
    2016年
  • 79篇
    2015年
  • 263篇
    2014年
  • 258篇
    2013年
成就勋章
TA的专栏
  • AR/VR
    12篇
  • 公司
    4篇
  • 前端后端技术
    4篇
  • IOS
    50篇
  • 图像处理和显示
    76篇
  • deep learning
    245篇
  • 教育
    21篇
  • 硬件材料
    2篇
  • 多媒体编程
    197篇
  • 无人驾驶
    45篇
  • 数学几何
    43篇
  • ROS
    28篇
  • 音频处理
    14篇
  • 机器人
    5篇
  • android源码分析
    67篇
  • 网络编程
    24篇
  • android系统
    162篇
  • android编程
    36篇
  • linux源码分析
    11篇
  • linux系统
    146篇
  • 编程知识
    42篇
  • 设计模式
    24篇
  • webkit
    22篇
  • 嵌入式硬解
    11篇
  • IT news
    45篇
  • 读书笔记
    14篇
  • 管理和读书
    21篇
  • smart TV
    9篇
  • startup
    78篇
  • 电脑技术
    9篇
兴趣领域 设置
  • 人工智能
    深度学习图像处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

WiFi新伙伴802.11AY来了,你必知的3件事

转自:https://baijiahao.baidu.com/s?id=1615713457503805791&wfr=spider&for=pc本月早些时候,Wi-Fi联盟宣布下一代Wi-Fi标准将被称为“Wi-Fi 6”,它就是之前我们提到过的802.11ax。而事实上还有一位“新伙伴”也即将加入到802.11的大家庭,它就是802.11ay了。那么关于802.11ay的身世,你知道吗?802.11ay何许“人”也?与我们熟知的802.11n(工作在2.4GHz和5G
转载
发布博客 2022.03.17 ·
95 阅读 ·
0 点赞 ·
0 评论

图解NCHW与NHWC数据格式

图解NCHW与NHWC数据格式_田海立@CSDN-CSDN博客_nchw流行的深度学习框架中有不同的数据格式,典型的有NCHW和NHWC格式。本文从逻辑表达和物理存储角度用图的方式来理解这两种数据格式,最后以RGB图像为例来加深NHWC和NCHW数据存储格式的理解。一、基本概念深度学习框架中,数据一般是4D,用NCHW或NHWC表达,其中:N - BatchC - ChannelH - HeightW - Width二、逻辑表达假定N = 2,C = 16,H = 5,.
转载
发布博客 2022.02.21 ·
203 阅读 ·
0 点赞 ·
0 评论

pytorch计算FLOPs

转自:pytorch计算FLOPs - 简书1. 引言其实模型的参数量好算,但浮点运算数并不好确定,我们一般也就根据参数量直接估计计算量了。但是像卷积之类的运算,它的参数量比较小,但是运算量非常大,它是一种计算密集型的操作。反观全连接结构,它的参数量非常多,但运算量并没有显得那么大。 此外,机器学习还有很多结构没有参数但存在计算,例如最大池化和Dropout等。因此,PyTorch-OpCounter 这种能直接统计 FLOPs 的工具还是非常有吸引力的。 PyTorch-OpCounter G
转载
发布博客 2021.12.21 ·
1132 阅读 ·
1 点赞 ·
0 评论

用Photoshop批量修改图片的分辨率和尺寸大小

转自:https://jingyan.baidu.com/article/ff411625b1b91a12e482370c.html假设你有很多很多张图片需要调整分辨率和尺寸大小,再假设要求每张图片的宽度为8cm,分辨率为300像素/英寸。以方便用于印刷制品的排版设计。我们需要借助Photoshop的“动作”脚本,将处理图片分辨率和尺寸大小的关键步骤进行录制,然后进行批量处理。工具/原料 Photoshop 需要图处理的图片 首先,记录动作 需要修改的图片放在同一个文件夹下
转载
发布博客 2021.12.12 ·
5448 阅读 ·
1 点赞 ·
0 评论

Flask部署YOLOv5

转自:Flask部署YOLOv5 - 知乎YOLOv5的flask部署 - 迷途小书童的Note的个人空间 - OSCHINA - 中文开源技术交流社区Flask是一种用python实现轻量级的web服务,也称为微服务,其灵活性较强而且效率高,在深度学习方面,也常常用来部署B/S模型。下面以yolov5s模型为例,介绍基于Flask的封装和部署过程。封装YOLOv5编写yolov5.py,封装yolov5推理过程class YOLOv5(object): # 参数设置 _
转载
发布博客 2021.12.11 ·
1819 阅读 ·
0 点赞 ·
0 评论

Python+uiautomator2手机UI自动化测试实战 --1. 环境搭建

转自:https://blog.csdn.net/ricky_yangrui/article/details/81414870一.简介uiautomator2是一个python库,用于Android的UI自动化测试,其底层基于Google uiautomator,Google提供的uiautomator库可以获取屏幕上任意一个APP的任意一个控件属性,并对其进行任意操作二.安装1. 安装uiautomator2pip install --upgrade --pre uiautomator
转载
发布博客 2021.12.02 ·
283 阅读 ·
0 点赞 ·
0 评论

主流Webrtc流媒体服务器之Kurento Media Server

webrtc kurento 服务端:https://blog.csdn.net/RJ0024/article/details/116499473https://doc-kurento-zh.readthedocs.io/zh/latest/user/about.htmlhttps://github.com/Kurento/kurento-media-server一、 什么是Kurento Media ServerKurento Media Server(KMS)是一个多媒体服务器软件包,.
转载
发布博客 2021.11.30 ·
357 阅读 ·
0 点赞 ·
0 评论

Pytorch中计算自己模型的FLOPs | thop.profile() 方法 | yolov5s 网络模型参数量、计算量统计

转自:Pytorch中计算自己模型的FLOPs | thop.profile() 方法 | yolov5s 网络模型参数量、计算量统计_墨理学AI-CSDN博客Pytorch: 用thop计算pytorch模型的FLOPs - 简书安装thoppip install thop基础用法以查看resnet50的FLOPs为例from torchvision.models import resnet50from thop import profilemodel = r
转载
发布博客 2021.11.16 ·
1319 阅读 ·
1 点赞 ·
0 评论

细粒度图像识别

转自:https://nicehuster.github.io/2019/06/12/fine-grain/一般而言,图像识别分为两种:传统图像识别和细粒度图像识别。前者指的是对一些大的类别比如汽车、动物、植物等大的类别进行分类,这是属于粗粒度的图像识别。而后者则是在某个类别下做进一步分类。比如在狗的类别下区分狗的品种是哈士奇、柯基、萨摩还是阿拉斯加等等,这是属于细粒度图像识别。数据集在细粒度图像识别领域,经典的基准数据集包括:鸟类数据集CUB200-2011,11788张图像,200个细粒
转载
发布博客 2021.10.29 ·
1342 阅读 ·
0 点赞 ·
0 评论

BRISK特征点描述算法详解

转自:BRISK特征点描述算法详解_AstoncPou的博客-CSDN博客_brisk特征点BRISK特征点描述算法详解简介BRISK算法是2011年ICCV上《BRISK:Binary Robust Invariant Scalable Keypoints》文章中,提出来的一种特征提取算法,也是一种二进制的特征描述算子。它具有较好的旋转不变性、尺度不变性,较好的鲁棒性等。在图像配准应用中,速度比较:SIFT<SURF<BRISK<FREAK<ORB,在对有较大模糊的图
转载
发布博客 2021.10.29 ·
119 阅读 ·
0 点赞 ·
0 评论

unity BlendShap (BS)实现捏脸

转自:https://www.yidianzixun.com/article/0X1w0b6S?s=&appid=BS(BlendShap)unity BlendShap 实现捏脸https://blog.csdn.net/u014361280/article/details/103929611https://blog.csdn.net/f_957995490/article/details/107863732
原创
发布博客 2021.10.29 ·
1743 阅读 ·
0 点赞 ·
0 评论

本地PC连接远程服务器上的Tensorboard

转自:本地PC连接远程服务器上的Tensorboard - 知乎tensorboard --logdir logs --bind_all在远程服务器上执行如下命令启动tensorboard的服务之后:tensorboard --logdir logs无法在本地PC上打开tensorboard的网页:http://server_ip:6006执行tensorboard --logdir logs命令有如下提示:liguanlin@opt48:/mnt/liguanlin/cod
转载
发布博客 2021.10.25 ·
151 阅读 ·
0 点赞 ·
0 评论

三维实时重建BundleFusion

转自:计算机视觉方向简介 | 深度相机室内实时稠密三维重建 - 知乎室内场景的稠密三维重建目前是一个非常热的研究领域,其目的是使用消费级相机(本文特指深度相机)对室内场景进行扫描,自动生成一个精确完整的三维模型,这里所说的室内可以是一个区域,一个房间,甚至是一整栋房屋。此外,该领域注重(一般是GPU上)实时重建,也就是一边扫描就可以一边查看当前重建的结果。如下所示。主要的应用包括室内的增强现实游戏、机器人室内导航、AR家具展示等。什么原理?在介绍原理前,先简单了解一下历史发展。1
转载
发布博客 2021.09.24 ·
572 阅读 ·
0 点赞 ·
0 评论

一文弄懂 Gitflow、Github flow、Gitlab flow 的工作流

转自:一文弄懂 Gitflow、Github flow、Gitlab flow 的工作流 - 云+社区 - 腾讯云Git Flow 的正确使用姿势 - 简书Git 作为一个源码管理系统,不可避免涉及到多人协作。协作必须有一个规范的工作流程,让大家有效地合作,使得项目井井有条地发展下去。”工作流程”在英语里,叫做”workflow”或者”flow”,原意是水流,比喻项目像水流那样,顺畅、自然地向前流动,不会发生冲击、对撞、甚至漩涡。本文介绍三种广泛使用的工作流程:Git flow
转载
发布博客 2021.09.16 ·
180 阅读 ·
0 点赞 ·
0 评论

涵盖 10 种舞蹈类型!谷歌开源基于 AIST++ 的 3D 舞蹈生成模型

转自:https://blog.csdn.net/csdnopensource/article/details/120309297?spm=1000.2115.3001.5927舞蹈作为一种表演艺术,需要由受过专业训练的舞者在音乐的伴奏下有节奏地完成一系列高难度动作,对舞者肢体的协调性和舞蹈动作的表现力要求极高,对机器学习模型来说则更具有挑战性,因为这项运动需要高度复杂的连续运动能力,同时还要捕捉动作和伴奏之间的非线性关系。9 月 13 日,软件工程师 Shan Yang 及科学家 Angjoo
转载
发布博客 2021.09.16 ·
96 阅读 ·
0 点赞 ·
0 评论

Jenkins详细教程

转自:https://www.jianshu.com/p/5f671aca2b5a一、jenkins是什么? Jenkins是一个开源的、提供友好操作界面的持续集成(CI)工具,起源于Hudson(Hudson是商用的),主要用于持续、自动的构建/测试软件项目、监控外部任务的运行(这个比较抽象,暂且写上,不做解释)。Jenkins用Java语言编写,可在Tomcat等流行的servlet容器中运行,也可独立运行。通常与版本管理工具(SCM)、构建工具结合使用。常用的版本控制工具有SVN...
转载
发布博客 2021.09.09 ·
36 阅读 ·
0 点赞 ·
0 评论

损失函数和正则化

参考:https://www.cnblogs.com/LXP-Never/p/10918704.htmlhttps://blog.csdn.net/Heitao5200/article/details/83030465https://zhuanlan.zhihu.com/p/35893078https://zhuanlan.zhihu.com/p/36794078作为损失函数L1范数损失函数  L1范数损失函数,也被称之为平均绝对值误差(MAE)。总的来说,它把目标值y(n)y(n.
转载
发布博客 2021.08.21 ·
257 阅读 ·
0 点赞 ·
0 评论

笔记︱几款多模态向量检索引擎:Faiss 、milvus、Proxima、vearch、Jina等

转自:https://zhuanlan.zhihu.com/p/364923722引用文章[7]的开篇,来表示什么是: 向量化搜索人工智能算法可以对物理世界的人/物/场景所产生各种非结构化数据(如语音、图片、视频,语言文字、行为等)进行抽象,变成多维的向量。这些向量如同数学空间中的坐标,标识着各个实体和实体关系。我们一般将非结构化数据变成向量的过程称为 Embedding,而非结构化检索则是对这些生成的向量进行检索,从而找到相应实体的过程。非结构化检索本质是向量检索技术,其主要的应用领
转载
发布博客 2021.08.18 ·
1364 阅读 ·
2 点赞 ·
0 评论

解决camera1 onPreviewFrame()会阻塞UI线程

转自:https://blog.csdn.net/qq_31939617/article/details/86360335https://www.huaweicloud.com/zhishi/arc-13664997.html 注意,onPreviewFrame()方法跟Camera.open()是运行于同一个线程,所以为了防止onPreviewFrame()会阻塞UI线程,将Camera.open()放置在子线程中运行。 1,void setPreviewCallback (Camera...
转载
发布博客 2021.08.18 ·
256 阅读 ·
0 点赞 ·
0 评论

一文看尽深度学习中的15种损失函数

转自:https://zhuanlan.zhihu.com/p/377799012在机器学习中,损失函数是代价函数的一部分,而代价函数则是目标函数的一种类型[1]。Loss function,即损失函数:用于定义单个训练样本与真实值之间的误差;Cost function,即代价函数:用于定义单个批次/整个训练集样本与真实值之间的误差;Objective function,即目标函数:泛指任意可以被优化的函数。损失函数是用于衡量模型所作出的预测离真实值(Ground Truth)之间的偏离
转载
发布博客 2021.08.15 ·
305 阅读 ·
1 点赞 ·
0 评论
加载更多