算法复习之分治与贪心(2)

Strassen矩阵乘法

问题描述

        给出一个矩阵A,B\in \mathbb{R}^{n\times n},求C=A\times B

核心思想

        将矩阵进行分块之后再做乘法计算,令   A=\begin{pmatrix} A_{11} &A_{12} \\ A_{21}&A_{22} \end{pmatrix}B=\begin{pmatrix} B_{11} &B_{12} \\ B_{21}&B_{22} \end{pmatrix}C=\begin{pmatrix} C_{11} & C_{12}\\ C_{21}&C_{22} \end{pmatrix}

        根据矩阵乘法的计算方法,可以得到

        \begin{cases} C_{11}=A_{11}\times B_{11}+A_{12}\times B_{21}\\ C_{12}=A_{11}\times B_{12}+A_{12}\times B_{22}\\ C_{21}=A_{21}\times B_{11}+A_{22}\times B_{21}\\ C_{22}=A_{21}\times B_{12}+A_{22}\times B_{22} \end{cases}

时间复杂度

        设算法的执行次数,存在以下递推关系

        T(n)=8T({\frac{n}{2}})+O(n^2) 


主定理

        如果一个分治算法的时间复杂度有以下形式的递推式

        T(n)=aT(\frac{n}{b})+O(n^d)

        便可以通过比较a,b,d之间的大小关系来确定算法的时间复杂度

        (1)如果d>log_{b}a,则算法时间复杂度为O(n^d)

        (2)如果d=log_{b}a,则算法时间复杂度为O(n^dlogn)

        (3)如果d<log_ba,则算法的时间复杂度为O(n^{log_ba})


        回到此题,显然使用主定理计算得到的算法时间复杂度为O(n^3)

思考

如何优化

        在现有的算法基础上,我们能否找到一个思路对于普通的矩阵乘法步骤进行优化。

        考虑到在计算过程中,矩阵的乘法其实包括了8次乘法和4次加法,显然乘法的时间开销要大于加法,故我们是否可以通过进行更多的加法来代替现有的乘法次数,从而实现缩短算法的执行时间

时间复杂度

        具体的优化步骤在这里就不做详细分析了,如果有兴趣的小伙伴可以自行查看。

        经过优化后,一共将会进行18次加法运算和7次乘法运算,算法的递推式为

        T(n)=7T(\frac{n}{2})+O(n^2)

        这样经过主定理计算后,得到算法此时的时间复杂度为O(n^{log_27})\approx O(n^{2.81})

总结

        通过这一种将时间消耗较高的运算步骤替换为几个时间消耗低的运算步骤,可以实现对于算法的优化,但是也不能盲目地进行转化,要找到两种运算步骤之间的平衡,才能更好更快地使用最优的算法解决问题。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小糖豆豆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值