support information

内容提要
本应用是一款智能学习英语的应用APP,亲子早教游戏,并且深入地了解它们!各种益智教育,启蒙教育,习惯培养,兴趣培养,
家庭育儿益智启蒙教育必备的免费APP,互动学习,通过实物图片,让孩子更早学会识别生活中的事物,认识事物后,要注意巩固对语言的认识,强化TA对语言的应用了。
颜色、形状、数字和玩具,学习了他们,就可以借之观察事物、熟悉世界,发现物与物之间的联系。… …从视觉听觉触觉三方面进行启蒙教育,让孩子在学习中轻松认知。

并且能让孩子在识物中,轻松掌握阅读常用字,早早体验自己阅读的快乐。
很多关卡多种常见动物卡片,玩个不停。

让孩子在快乐中学习成长是我们的宗旨!【产品特色】
本款应用是专为早教设计的语言教育软件。每个英文字母
都配有精美的动画场景,帮助孩子在认识英文字母的同时学
习相对应以该字母开头的单词,充分发挥想象力与联
想能力,培养孩子用联想记忆法轻松学习英文,使孩子在学
习字母的同时又扩展了词汇量,为将来的英文学习奠定一定
的基础。

------------------------------------
游戏特色:
*阶段性学习游戏
*配对游戏:针对各个年龄的孩子精心设计的益智游戏,培养孩子的判断能力。
*发音:帮助开发孩子的视觉,锻炼其视觉辨别能力以及空间定位能力。
*识物游戏 :帮助孩子开发空间识别能力、匹配能力、触觉能力和精细动作能力。
丰富有趣的产品让孩子在游戏中独立思考,自由学习,享受探索世界的乐趣。

本应用---为免费版本。

• 学汉字-识字、认字,轻松完成幼小衔接,妈妈必备孩子最爱的早教育儿启蒙游戏。
●卡片类型分别有 野生动物、车、农场动物、食物、蔬菜、水果、数字、恐龙、形状颜色、植物、自然天气、数码时代、身体部位、家庭、日常用品、体育。

专注于早教产品的研发,根据不同年龄段孩子的成长特点,精心打造专属的幼儿产品,交互方式独特,以达到教育的目的和效果启蒙,为孩子的童年增添了一抹亮丽的门,有利于孩子的健康身体和智力发育,智力发展和完善,在娱乐轻松的学习和成长。让孩子在英语和识物这辆巴士上快速成长。
-------------------------------------
【联系我们】
如果有任何问题,请联系我们,欢迎大家加QQ群交流。
用户交流QQ群:292097439
反馈邮箱:1691288915@qq.com
欢迎联系我们,提出宝贵建议,共同为孩子设计更优秀的产品!

### SUPPORT Dataset in Machine Learning Context In the context of machine learning and data science, the term "SUPPORT" often refers to a specific dataset used primarily for research purposes. This dataset originates from studies aimed at predicting survival probabilities for patients who are critically ill[^1]. The SUPPORT (Study to Understand Prognoses Preferences Outcomes and Risks of Treatment) dataset includes various features related to patient demographics, clinical measurements, laboratory results, and outcomes. #### Key Characteristics of the SUPPORT Dataset - **Data Source**: Collected from multiple hospitals across different regions. - **Patient Population**: Focuses on adult patients admitted to intensive care units (ICUs). - **Feature Set**: Includes demographic information like age, gender; physiological parameters such as heart rate, blood pressure; lab test values including creatinine levels, white cell counts; comorbidities presence or absence. - **Outcome Variable(s)**: Typically involves binary classification targets indicating whether a patient survived beyond certain time points post-admission. This dataset has been widely utilized within healthcare analytics applications where predictive modeling plays an essential role in understanding mortality risks associated with critical illnesses. Researchers leverage these insights into building more accurate prognostic models which could potentially improve decision-making processes around end-of-life care planning. For practical implementation using Python libraries: ```python import pandas as pd from sklearn.model_selection import train_test_split # Load the dataset assuming it's available locally or through some API endpoint df = pd.read_csv('path_to_support_dataset.csv') # Preprocessing steps might include handling missing values, encoding categorical variables etc. X = df.drop(columns=['survival_status']) # Features excluding target variable y = df['survival_status'] # Target variable # Splitting into training/testing sets while preserving class distribution ratio X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) print(f'Training set shape: {X_train.shape}') print(f'Testing set shape: {X_test.shape}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值