缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,进而去数据库中查询也没有命中,导致每次查询都直接打到数据库上,给数据库带来巨大压力。使用互斥锁可以在一定程度上缓解缓存穿透问题。
以下是缓存穿透加互斥锁的解决方案:
一、整体流程
当接收到一个查询请求时,首先尝试从缓存中获取数据。
如果缓存中没有命中,尝试获取互斥锁。
只有获得互斥锁的请求才会去数据库中查询数据。
如果数据库中也没有查询到结果,将一个特殊的空值(例如 null 或者一个特定的标识)存入缓存,并设置一个较短的过期时间(防止这个无效的空值长时间占用缓存空间)。
如果数据库中查询到结果,将结果存入缓存,并返回给客户端。
释放互斥锁,以便其他请求可以获取锁进行后续操作。
二、代码示例(以 Java 为例)
java
复制
import redis.clients.jedis.Jedis;
public class CacheWithMutex {
private static final String CACHE_KEY_PREFIX = "your_cache_key_prefix:";
private static final String LOCK_KEY_PREFIX = "your_lock_key_prefix:";
private static final int CACHE_EXPIRE_TIME = 60; // 缓存过期时间,单位:秒
private static final int LOCK_EXPIRE_TIME = 10; // 锁过期时间,单位:秒
public static Object getData(String key) {
// 从缓存中获取数据
Jedis jedis = new Jedis("localhost", 6379);
String cachedValue = jedis.get(CACHE_KEY_PREFIX + key);
if (cachedValue!= null) {
// 如果缓存中有数据,直接返回
return deserialize(cachedValue);
}
// 尝试获取锁
String lockKey = LOCK_KEY_PREFIX + key;
String lockValue = System.currentTimeMillis() + "";
if (jedis.setnx(lockKey, lockValue) == 1) {
// 设置锁过期时间,防止死锁
jedis.expire(lockKey, LOCK_EXPIRE_TIME);
try {
// 从数据库中查询数据
Object data = queryFromDatabase(key);
if (data == null) {
// 如果数据库中也没有数据,存入一个特殊的空值到缓存
jedis.setex(CACHE_KEY_PREFIX + key, CACHE_EXPIRE_TIME, serialize(null));
return null;
} else {
// 如果数据库中有数据,存入缓存并返回
jedis.setex(CACHE_KEY_PREFIX + key, CACHE_EXPIRE_TIME, serialize(data));
return data;
}
} finally {
// 释放锁
String currentValue = jedis.get(lockKey);
if (currentValue!= null && currentValue.equals(lockValue)) {
jedis.del(lockKey);
}
}
} else {
// 没有获取到锁,等待一段时间后重试
try {
Thread.sleep(100);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return getData(key);
}
}
private static Object queryFromDatabase(String key) {
// 模拟从数据库中查询数据
return null;
}
private static String serialize(Object obj) {
// 序列化方法,可以根据实际情况实现
return null;
}
private static Object deserialize(String str) {
// 反序列化方法,可以根据实际情况实现
return null;
}
}
在上述代码中,使用 Redis 作为缓存存储,通过互斥锁来控制对数据库的查询操作,避免大量请求同时穿透缓存打到数据库上。
需要注意的是,这种方法虽然可以缓解缓存穿透问题,但也引入了一些额外的复杂性,如需要处理锁的获取和释放、可能的死锁问题等。在实际应用中,还可以结合其他方法,如布隆过滤器,来进一步减少缓存穿透的可能性。