确知信号(一)

出于课题需要学习部分通讯原理的知识

0、基础知识

在学习确知信号的频域性质和时域性质前需要掌握一些基础的数学知识和信号的一些基本概念,以下列出:

0-1 正交函数集

( t 1 , t 2 ) (t1, t2) (t1,t2)区间内定义两个非零实函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t),若满足: ∫ t 1 t 2 f 1 ( t ) f 2 ( t ) d t = 0 \int_{t_1}^{t_2}{f_1(t)}{f_2(t)}dt = 0 t1t2f1(t)f2(t)dt=0
则称 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内正交。
如果有n个非零实函数数 f 1 ( t ) , f 2 ( t ) , . . . , f n ( t ) f_1(t), f_2(t), ... , f_n(t) f1(t),f2(t),...,fn(t)构成一个函数集,如果这些函数在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内满足: ∫ t 1 t 2 f i ( t ) f j ( t ) d t = { 0 , i ≠ j k i , i = j \int_{t_1}^{t_2}{f_i(t)}{f_j(t)}dt=\begin{cases} 0, & i \neq j \\ k_i, & i=j \end{cases} t1t2fi(t)fj(t)dt={0,ki,i=ji=j
其中 k i k_i ki为常数,则称此函数集为区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内的正交函数集。如过在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内存在除了函数集外不存在非零函数 ϕ ( t ) \phi(t) ϕ(t)满足: ∫ t 1 t 2 f i ( t ) f j ( t ) d t = { 0 , i ≠ j k i , i = j \int_{t_1}^{t_2}{f_i(t)}{f_j(t)}dt=\begin{cases} 0, & i \neq j \\ k_i, & i=j \end{cases} t1t2fi(t)fj(t)dt={0,ki,i=ji=j
则称此正交函数集为完备的正交函数集,反之则不完备。

下面不加证明给出:
三角函数集{ 1 , c o s w 0 t , s i n w 0 t , . . . , c o s n w 0 t , s i n n w 0 t , . . . 1, cosw_0t,sinw_0t,...,cosnw_0t,sinnw_0t,... 1,cosw0t,sinw0t,...,cosnw0t,sinnw0t,...}为区间 ( t 0 , t 0 + T ) (t_0,t_0+T) (t0,t0+T)内的完备正交函数集,其中 T = 2 π / w 0 T=2\pi/w_0 T=2π/w0
复函数集{ e j n w o t e^{jnw_ot} ejnwot}( n = 0 , ± 1 , ± 2 , … ) n=0,\pm1,\pm2, \ldots) n=0,±1,±2,)在区间 ( t 0 , t 0 + T ) (t_0,t_0+T) (t0,t0+T)内是完备正交函数集,其中 T = 2 π / w 0 T=2\pi/w_0 T=2π/w0

0-2信号正交分解

与矢量空间一样,在信号空间中如有n个函数 f 1 ( t ) , f 2 ( t ) , … , f n ( t ) f_1(t),f_2(t),\ldots, f_n(t) f1(t),f2(t),,fn(t)在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内构成正交函数集,则信号空间中的任意信号 x ( t ) x(t) x(t)可以表示为他们的线性组合,设 x e ( t ) x_e(t) xe(t)为这种表示引起的误差,则: x ( t ) = ∑ i = 1 n c i f i ( t ) + x e ( t ) x(t)= \sum_{i=1}^n c_if_i(t)+x_e(t) x(t)=i=1ncifi(t)+xe(t)
要使这种线性组合最接近原始信号,即均方误差最小: x e 2 ( t ) ˉ = 1 t 2 − t 1 ∫ t 1 t 2 [ x ( t ) − ∑ i = 1 n c i f i ( t ) ] 2 d t \bar{x_e^2(t)}=\frac 1{t2-t1} \int_{t_1}^{t_2}[x(t)-\sum_{i=1}^n c_if_i(t)]^2dt xe2(t)ˉ=t2t11t1t2[x(t)i=1ncifi(t)]2dt
则系数 c j c_j cj必须为: ∂ x e 2 ( t ) ˉ ∂ c j = ∂ ∂ c j ∫ t 1 t 2 [ x ( t ) − ∑ i = 1 n c i f i ( t ) ] 2 d t = 0 \frac {\partial {\bar{x_e^2(t)}}} {\partial c_j} = \frac {\partial } {\partial c_j} \int_{t_1}^{t_2}[x(t)- \sum_{i=1}^{n}c_if_i(t)]^2dt =0 cjxe2(t)ˉ=cjt1t2[x(t)i=1ncifi(t)]2dt=0
考虑到正交函数集的定义,可化简为: ∫ t 1 t 2 x ( t ) f j ( t ) d t = c j ∫ t 1 t 2 f j 2 ( t ) d t \int_{t_1}^{t_2}x(t)f_j(t)dt = c_j \int_{t_1}^{t_2}f_j^2(t)dt t1t2x(t)fj(t)dt=cjt1t2fj2(t)dt
求得: c j = ∫ t 1 t 2 x ( t ) f j ( t ) d t ∫ t 1 t 2 f j 2 ( t ) d t = ∫ t 1 t 2 x ( t ) f j ( t ) d t k j c_j = \frac {\int_{t_1}^{t_2}x(t)f_j(t)dt} {\int_{t_1}^{t_2} f_j^2(t)dt} = \frac {\int_{t_1}^{t_2}x(t)f_j(t)dt} {k_j} cj=t1t2fj2(t)dtt1t2x(t)fj(t)dt=kjt1t2x(t)fj(t)dt

按这样求得的 c j c_j cj可使得均方差最小,此时有: x e 2 ( t ) ˉ = 1 t 2 − t 1 ∫ t 1 t 2 [ x ( t ) − ∑ i = 1 n c i f i ( t ) ] 2 d t = 1 t 2 − t 1 ∫ t 1 t 2 [ x 2 ( t ) − ∑ i = 1 n c i k i ] d t \bar{x_e^2(t)} = \frac {1} {t_2 - t_1} \int_{t_1}^{t_2}[x(t) - \sum_{i=1}^{n} c_if_i(t)]^2dt \\[2ex]= \frac {1} {t_2 - t_1} \int_{t_1}^{t_2}[x^2(t) - \sum_{i=1}^{n} c_ik_i]dt xe2(t)ˉ=t2t11t1t2[x(t)i=1ncifi(t)]2dt=t2t11t1t2[x2(t)i=1nciki]dt
和n维矢量空间中的任意矢量分解一样,如果正交函数集 f i ( t ) ( i = 1 , 2 , 3 , … , n ) {f_i(t)}(i=1, 2, 3, \ldots,n) fi(t)(i=1,2,3,,n)是完备的,则此时均方误差为零, x e ( t ) x_e(t) xe(t)可以完全由n个正交函数精确描述。
一般情况下,用正交函数的线性组合去近似 x ( t ) x(t) x(t)时,所取的项数越多,引起的均方误差就越小,当 n → ∞ n \to \infin n时,均方误差为零,可得等式: ∫ t 1 t 2 x 2 ( t ) d t = ∑ i = 1 ∞ c i k i \int_{t_1}^{t_2}x^2(t)dt = \sum_{i=1}^{\infin} c_ik_i t1t2x2(t)dt=i=1ciki
这一公式被称为Parseral方程,反应了信号 x ( t ) x(t) x(t)的能量等于其在完备正交函数集中各分量的能量之和。

0-3 傅里叶级数

对于周期性的连续函数 x ( t ) = x ( t + T ) x(t)=x(t+T) x(t)=x(t+T),如果其满足Dirichlet条件,则可分解为三角函数表达式:
x ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n w 0 t + b n s i n n w 0 t ) = A 0 2 + ∑ n = 1 ∞ A n c o s ( n w 0 t + φ n ) \begin{aligned} x(t) &= \frac {a_0} {2} + \sum_{n=1}^{\infin}(a_n cos nw_0t + b_n sin nw_0t) \\&= \frac {A_0} 2 +\sum_{n=1}^{\infin}A_ncos(nw_0t+ \varphi_n) \end{aligned} x(t)=2a0+n=1(ancosnw0t+bnsinnw0t)=2A0+n=1Ancos(nw0t+φn)
又称三角傅里叶级数,其中: a 0 = 2 T 0 ∫ − T 0 / 2 T 0 / 2 x ( t ) d t a_0=\frac 2 {T_0} \int_{-T_0/2}^{T_0/2}x(t)dt a0=T02T0/2T0/2x(t)dt
a n = 2 T 0 ∫ − T 0 / 2 T 0 / 2 x ( t ) c o s n w 0 t d t a_n =\frac 2 {T_0} \int_{-T_0/2}^{T_0/2} x(t)cosnw_0tdt an=T02T0/2T0/2x(t)cosnw0tdt
b n = 2 T 0 ∫ − T 0 / 2 T 0 / 2 x ( t ) s i n n w 0 t d t b_n =\frac 2 {T_0} \int_{-T_0/2}^{T_0/2} x(t)sinnw_0tdt bn=T02T0/2T0/2x(t)sinnw0tdt

依据欧拉公式,可得其傅里叶级数的指数形式: x ( t ) = A 0 2 + 1 2 ∑ n = 1 ∞ A n e j φ n e j n w 0 t + 1 2 ∑ n = 1 ∞ A n e − j φ n e − j n w 0 t = 1 2 ∑ n = − ∞ ∞ A n e j φ n e j n w o t \begin{aligned} x(t) &= \frac {A_0} {2} + \frac 1 2 \sum_{n=1}^{\infin} A_ne^{j \varphi_n e^{jnw_0t}} + \frac 1 2 \sum_{n=1}^{\infin} A_ne^{-j \varphi_n e^{-jnw_0t}} \\&=\frac{1} {2} \sum_{n = - \infin}^{\infin} A_ne^{j\varphi_n e^{jnw_ot}} \end{aligned} x(t)=2A0+21n=1Anejφnejnw0t+21n=1Anejφnejnw0t=21n=Anejφnejnwot
其中 A 0 = a 0 , A n = a n 2 + b n 2 , φ n = − a r c t a n b n a n A_0=a_0, A_n=\sqrt{a_n^2+b_n^2}, \varphi_n=- arctan \frac {b_n} {a_n} A0=a0,An=an2+bn2 ,φn=arctananbn

1、基本定义

1-1确知信号类型

确知信号是指其取值在任何时间都是确定的和可预知的型号,通常可以用数学公式表示它在任何时间的取值。
按照是否具有周期,信号可以分为周期信号和非周期信号: x ( t ) = x ( t + T 0 ) x(t)=x(t+T_0) x(t)=x(t+T0)
按照能量是否有限,信号可以分为能量信号和功率信号,这里需要明确一点:这种信号概念是建立在无穷大时间积分的基础上的。

在通信理论中,通常把信号功率定义为:电流在单位电阻上消耗的功率,即归一化的功率 P P P,因此功率 P = V 2 / R = I 2 R = V 2 = I 2 P=V^2/R=I^2R=V^2=I^2 P=V2/R=I2R=V2=I2,之后一般化的用X代表信号电流或电压来计算功率,考虑到电压或电流随时间的变化,把X改写为时间的函数x(t)。综上,信号能量E为: E = ∫ − ∞ ∞ x 2 ( t ) d t E=\int_{-\infin}^{\infin} x^2(t)dt E=x2(t)dt
若E为一个有限正值即: 0 < E < ∞ 0 < E < \infin 0<E<,则称此信号为能量信号。
接着继续定义信号的平均功率P为: P = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 x 2 ( t ) d t P=\lim_{T\to\infin} \frac {1} {T} \int_{-T/2}^{T/2} x^2(t)dt P=TlimT1T/2T/2x2(t)dt
若P是一个有限的正值,则把这种信号称为功率信号。

易知,对于如上定义存在三种情况:有限能量+零功率;无限能量+有限功率;无限能量+无限功率;(代表波形如下3图所示)

来源知乎专栏与信号处理有关的那些东东作者Mr.括号

代表波形1
代表波形1:一个方波
代表波形2

代表波形2:一个无限延伸的正弦波

代表波形3
代表波形3:无限延伸的单调波形

1-2 周期信号的频谱

对于周期性的信号,其三角傅里叶级数形式为: x ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n w 0 t + b n s i n n w 0 t ) = A 0 2 + ∑ n = 1 ∞ A n c o s ( n w 0 t + φ n ) \begin{aligned} x(t) &= \frac {a_0} {2} + \sum_{n=1}^{\infin}(a_n cos nw_0t + b_n sin nw_0t) \\&= \frac {A_0} 2 +\sum_{n=1}^{\infin}A_ncos(nw_0t+ \varphi_n) \end{aligned} x(t)=2a0+n=1(ancosnw0t+bnsinnw0t)=2A0+n=1Ancos(nw0t+φn)
它表明:一个周期信号可以分解为直流分量( A 0 / 2 A_0/2 A0/2)和一系列余弦或正弦形式的交流分量。
物理意义较为明确,但运算不方便,由于正弦型信号和复指数型信号具有同一性,因此在后续计算中采用傅里叶级数的指数形式,即:
x ( t ) = 1 2 ∑ n = − ∞ ∞ A n e j φ n e j n w o t = ∑ n = − ∞ ∞ X ( n w 0 ) e j n w 0 t \begin{aligned} x(t) &= \frac 1 2\sum_{n = - \infin}^{\infin} A_ne^{j\varphi_n e^{jnw_ot}}\\&=\sum_{n = - \infin}^{\infin} X(nw_0)e^{jnw_0t} \end{aligned} x(t)=21n=Anejφnejnwot=n=X(nw0)ejnw0t
式中 A 0 = a 0 , A n = a n 2 + b n 2 , φ n = − a r c t a n b n a n A_0=a_0, A_n=\sqrt{a_n^2+b_n^2}, \varphi_n=- arctan \frac {b_n} {a_n} A0=a0,An=an2+bn2 ,φn=arctananbn
其中 X ( n w 0 ) = 1 2 A n e j φ n X(nw_0)=\frac 1 2 A_ne^{j\varphi_n} X(nw0)=21Anejφn,称为傅里叶系数,是 n w 0 nw_0 nw0的函数,可化简为:
X ( n w 0 ) = 1 2 A n e j φ n = 1 2 [ A n c o s φ n + j A n s i n φ n ] = 1 2 ( a n − j b n ) = 1 T 0 [ ∫ − T 0 / 2 T 0 / 2 x ( t ) c o s n w 0 t d t − j ∫ − T 0 / 2 T / 2 x ( t ) s i n n w 0 t d t ] = 1 T 0 ∫ − T 0 / 2 T 0 / 2 x ( t ) e − j n w o t d t n = 0 , ± 1 , ± 2 , … \begin{aligned} X(nw_0)&=\frac 1 2 A_n e^{j \varphi_n}=\frac 1 2 [A_ncos\varphi_n + jA_nsin\varphi_n]=\frac 1 2 (a_n-jb_n) \\[2ex]&=\frac 1 {T_0} [\int_{-T_0/2}^{T_0/2} x(t)cosnw_0tdt - j \int_{-T_0/2}^{T_/2}x(t)sinnw_0tdt] \\[2ex]&=\frac 1 {T_0} \int_{-T_0/2}^{T_0/2} x(t)e^{-jnw_ot}dt \qquad n=0,\pm 1,\pm 2,\ldots \end{aligned} X(nw0)=21Anejφn=21[Ancosφn+jAnsinφn]=21(anjbn)=T01[T0/2T0/2x(t)cosnw0tdtjT0/2T/2x(t)sinnw0tdt]=T01T0/2T0/2x(t)ejnwotdtn=0,±1,±2,

这种指数形式的傅里叶级数表达式中,傅里叶系数(复数量)是离散频率 n w 0 nw_0 nw0的复函数,其模 ∣ X ( n w 0 ) ∣ = 1 2 A n |X(nw_0)|=\frac 1 2 A_n X(nw0)=21An反应了各谐波的幅度,它的相位角 φ n \varphi_n φn反应了各个谐波分量的相位。

观察 X ( n w 0 ) X(nw_0) X(nw0)的表达式,等价于 x ( t ) x(t) x(t)在正交函数集{ e j n w 0 t e^{jnw_0t} ejnw0t}上做正交分解,将其分解为各个频率 n w 0 nw_0 nw0上的大小,因此得到的结果就是频率的分布,称为频谱。(个人见解)
我们把 X ( n w 0 ) X(nw_0) X(nw0)随着频率 n w 0 nw_0 nw0的分布称为信号的频谱,通常把 ∣ X ( n w 0 ) ∣ |X(nw_0)| X(nw0)随频率的分布称为幅度频谱,简称幅频,相位 φ n \varphi_n φn随频率的分布称为相位频谱,简称相频。为了直观往往以频率为横坐标,各谐波分量的幅度或相位为纵坐标,画出幅频和相频的变化规律,称为信号的频谱图。

例1:求下图所示的周期矩形脉冲信号的频谱


Sany 何灿——连续信号(三) | 周期信号的频谱分析 | 傅里叶级数展开式 + 频谱特性

在这里插入图片描述
矩形脉冲信号在一个周期内可表示为: x ( t ) = { E , − τ 2 ≤ t ≤ τ 2 0 , e l s e x(t)=\begin{cases} E, & -\frac {\tau} 2 \leq t \leq \frac \tau 2 \\[2ex] 0, & else \end{cases} x(t)=E,0,2τt2τelse
按傅里叶系数公式:
X ( n w 0 ) = 1 T 0 ∫ − T 0 / 2 T 0 / 2 x ( t ) e − j n w o t d t = E τ T 0 s i n 1 2 n w 0 τ 1 2 n w 0 τ = E τ T 0 S a ( n w 0 τ 2 ) \begin{aligned} X(nw_0) &= \frac 1 {T_0} \int_{-T_0/2}^{T_0/2} x(t)e^{-jnw_ot}dt \\[2ex]&=\frac {E \tau} {T_0} \frac {sin \frac{1} {2} nw_0 \tau} { \frac{1} {2}nw_0 \tau} \\[2ex]&= \frac{E \tau} {T_0} Sa(\frac {nw_0\tau} {2}) \end{aligned} X(nw0)=T01T0/2T0/2x(t)ejnwotdt=T0Eτ21nw0τsin21nw0τ=T0EτSa(2nw0τ)
可见 X ( n w 0 ) X(nw_0) X(nw0)为实数,其相位只有0和 ± π \pm\pi ±π,故可直接画出其频谱图:取E=1, T 0 = 4 τ T_0=4\tau T0=4τ
频谱图
T 0 T_0 T0不变而改变 τ \tau τ从而使信号的占空比改变时,由于 w 0 w_0 w0不变,所以谱线之间的间隔不变,但随着 τ \tau τ的减小(脉冲宽度减小),第一个过零点的频率增大,谱线的幅度减小。而将 τ \tau τ固定,通过改变 T 0 T_0 T0来改变信号的占空比时,随着 T 0 T_0 T0 增大,基波频率 w 0 w_0 w0减少,谱线将变得更密集,但第一个过零点的频率不变,谱线的幅度有所降低。作为极端情况,如果周期 T 0 T_0 T0 无限增长,周期信号变成了非周期信号,这时,相邻谱线的间隔将趋于零,成为连续频谱。
在这里插入图片描述
在这里插入图片描述
由频谱图可以得出周期矩形脉冲信号的频谱具有三个特点:

(1)离散性:频谱是非周期性的离散的线状频谱,称它们为谱线,连接各谱线顶点的曲线为包络线,它反映了各频率分量的幅度随频率变化的情况。
(2)谐波性:谱线以基波频率 w 0 w_0 w0为间隔等距离分布,表明周期矩形脉冲信号只包含直流分量、基波分量和各次谐波分量。
(3)收敛性:谱线幅度整体上具有减小的趋势,同时,由于各谱线的幅度按包络线 S a ( 1 2 n w 0 τ ) Sa(\frac 1 2 n w_0\tau) Sa(21nw0τ)的规律变化而等间隔地经过零点,较高幅值的谱线都集中在第一个过零点范围内( w = n w 0 = 2 π τ w=nw_0=\frac {2\pi} {\tau} w=nw0=τ2π),表明信号的能量绝大部分由该频率范围的各谐波分量决定,通常把这个频率范围称为周期矩形脉冲信号的频带宽度或带宽,用符号 w b w_b wb f b f_b fb表示。信号的带宽是信号频率特性中的重要指标,它具有实际意义。信号在其带宽内集中了大部分的能量,因此在允许一定失真的条件下,只需传送带宽内的各频率分量就行了;当信号通过某一系统时,要求系统的带宽与信号的带宽匹配,否则,若系统的带宽小于信号的带宽,信号中包含的一部分谐波分量和能量就不能顺利地通过系统。由上可知,脉冲宽度 τ \tau τ越小,带宽 w b w_b wb 越大,频带内所含的分量越多。

以上三个特点时任何满足狄利赫里条件的周期信号的频谱所共同具有的。

全文大部分内容来自《通讯原理》(第七版)、作者:Sany 何灿 的专栏数字信号同时少量引用了知乎专栏与信号处理有关的那些东东作者Mr.括号关于信号分类的内容

撰写这些只为加强记忆和理顺逻辑利于继续深入以及后期回顾,再次感谢上述博主的文章给我学习这方面知识提供了很大的帮助。
待续 … \ldots

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值