数字信号
文章平均质量分 72
Sany 何灿
这个作者很懒,什么都没留下…
展开
-
数字信号分析学习思想整理 | 基本框架
1.信号分析的基本思路:在不同的表达域把信号分解成简单信号的线性组合,通过对构成信号的基本单元的了解达到掌握信号特性的目的。2.信号的时域分析:通常是将连续时间信号表示为单位冲激信号δ(t)\delta(t)δ(t)的加权积分,将离散时间信号表示为单位脉冲信号δ(n)\delta(n)δ(n)的加权和。3.信号的频域分析:将连续时间信号表示为复指数信号(或谐波信号)ejwte^{jwt}ejwt的加权积分,将离散时间信号表示为复指数信号ejΩne^{j\Omega n}ejΩn的加权和。4.时域与频域原创 2021-04-17 15:52:45 · 1971 阅读 · 1 评论 -
基2的FFT算法 | Python实现
import numpy as npimport mathfrom scipy.fftpack import fftdef my_fft(x, N): """ 实现FFT x: 离散序列 N: x的长度 """ # 反序排列 F = np.array(x) LH = int(N / 2) J = LH # print(J) M = N - 2 for I in range(1, M+1原创 2020-08-04 23:54:08 · 1168 阅读 · 0 评论 -
离散信号(八)| 离散傅里叶变换DFT性质(圆周移位、圆周卷积)
离散傅里叶变换DFT的性质离散傅里叶变换是傅里叶变换在时域、频域均离散化的形式,因而它与其它傅里叶变换有着相似的性质。但是它又是从傅里叶级数派生而来,所以又具有一些与其它傅里叶变换不同的特性,其中最主要的圆周移位性质和圆周卷积性质。如上所述,一个有限长序列x(n)x(n)x(n)的DFT,可以看作以有限长度N为周期,将x(n)x(n)x(n)进行周期延拓形成的周期序列xp(n)x_p(n)xp(n)在一个周期内的离散频谱。因此研究DFT的性质必须以周期性序列的特点作为其基本出发点。1, 线性性质若x原创 2020-07-03 11:33:56 · 22183 阅读 · 4 评论 -
离散信号(七)| 离散傅里叶变换(DFT)推导
离散傅里叶变换(DFT)离散信号的傅里叶变换DTFT,它是Ω\OmegaΩ的连续周期函数,尽管在理论上有重要意义,但在实际中往往难于计算,尤其在数字计算机上实现有困难。为此我们需要一种时域和频域都离散的傅里叶变换对,这就是离散傅里叶变换(Discrete Fourier Transformation),简称DFT。DFT的导出有多种方法,比较方便同时物理意义也比较明确的是从离散傅里叶级数(DFS)着手。由于时域和频域都是离散的,因而这种傅里叶变换对有其特殊性质,这些性质使DFT在实际应用中有时会产生误解。原创 2020-07-03 11:30:35 · 8304 阅读 · 0 评论 -
离散信号(六)| 非周期信号 | 离散时间傅里叶变换(DTFT)+ DTFT、DFS及CTFT之间的关系
非周期信号的频域分析与连续信号类似,对于离散的非周期信号,可采用离散时间傅里叶变换(DTFT)进行分析。(一)从DFS到DTFT非周期序列可以看作周期为无穷大的周期序列,从这一思想出发,可以在周期序列的傅里叶级数DFS基础上推导非周期序列的傅里叶变换。类似连续信号,对于长度有限的非周期信号x(n)x(n)x(n),以N为周期,将x(n)x(n)x(n)延拓为周期信号xN(n)x_N(n)xN(n),这里,要求N大于x(n)x(n)x(n)的长度,因为此时xN(n)x_N(n)xN(n)是x(n)x原创 2020-07-03 11:27:13 · 3238 阅读 · 0 评论 -
离散信号(五) | 离散周期信号的频谱 + 混叠与泄露
(三)离散周期信号的频谱对于一个离散时间周期信号x(n)x(n)x(n),可以通过IDFS从它的周期性离散频谱X(kΩ0)X(k\Omega_0)X(kΩ0)求得原始序列x(n)x(n)x(n),它们是一一对应的关系。也就是说,用有限项的复指数序列来表示周期序列x(n)x(n)x(n)时,不同的x(n)x(n)x(n)反映在具有不同的复振幅X(kΩ0)X(k\Omega_0)X(kΩ0),所以X(kΩ0)X(k\Omega_0)X(kΩ0)完整地描述了x(n)x(n)x(n)。由于它是数字频率的函数原创 2020-07-03 11:21:14 · 8152 阅读 · 0 评论 -
离散信号(四)| 周期信号 |离散傅里叶级数(DFS)推导 + 主要性质(周期卷积定理、帕斯瓦尔定理)
离散傅里叶变换(DFT)要解决两个问题:一是信号离散化后它的频谱情况;二是快速运算算法。第一个问题将涉及周期离散信号的傅里叶级数(DFS),以及由DFS得到非周期信号的离散时间傅里叶变换(DTFT)和有限长序列的离散频谱表示;第二个问题将涉及DFT的快速算法——快速傅里叶变换(FFT)。周期信号的频域分析与周期模拟信号一样,周期离散信号同样可以展成傅里叶级数形式,并由此得出一新的变换对——离散傅里叶级数(Discrete Fourier Series),简记为DFS。(一)离散傅里叶级数(DFS)的引原创 2020-07-03 11:19:52 · 13753 阅读 · 2 评论 -
离散信号(三) | 时域运算性质 (差分、卷积)
离散信号的时域运算离散信号的时域运算包括平移、翻转、相加、相乘、累加、差分、时间尺度变换、卷积和及相关运算等。(一)平移如果有序列x(n)x(n)x(n),当m为正时,x(n−m)x(n-m)x(n−m)是指序列x(n)x(n)x(n)逐项依次延时(右移)m位得到的一个新序列,而x(n+m)x(n+m)x(n+m)则指依次超前(左移)m位。m为负时,则相反。(二)翻转如果有序列x(n)x(n)x(n),则x(−n)x(-n)x(−n)是以纵轴为对称轴将序列x(n)x(n)x(n)加以翻转得到的新序原创 2020-07-03 11:13:31 · 9898 阅读 · 1 评论 -
离散信号(二) | 离散信号描述 + 典型离散信号(典型序列)
2.1.4 离散信号的描述无论是采样得到的离散信号,还是客观事物给出的离散信号,只要给出函数值的离散时刻是等间隔的,我们都可以用序列x(n)x(n)x(n)来表示它们,这里n是各函数值在序列中出现的序号。通常可以用x(n)x(n)x(n)在整个定义域内的一组有序数列的集合{x(n)}\{x(n)\}{x(n)}来表示一个离散信号,例如表示了一个离散信号,n值规定为自左向右逐一递增。显然,这里x(0)=4,x(1)=3,⋯x(0)=4,x(1)=3,\cdotsx(0)=4,x(1)=3,⋯。如果x原创 2020-07-03 11:11:08 · 14547 阅读 · 0 评论 -
离散信号(一) | 信号的采样和恢复+时域、频域采样定理
离线信号是指在时间上是离散的,即只在某些不连续的规定时刻给出信号的瞬时值,而在其它时刻无意义的信号。连续时间信号的采样是离散信号产生的方法之一,而计算机技术的发展以及数字技术的广泛应用是离散信号分析、处理理论和方法迅速发展的动力。离散信号的时域描述和分析1. 信号的采样和恢复理想化的采样过程是一个将连续信号进行脉冲调制的过程,即xs(t)x_s(t)xs(t)表示为连续信号x(t)x(t)x(t)与周期性冲激串δT(t)=∑n=−∞∞δ(t−nTn)\delta_T(t)=\sum_{n=-\inf原创 2020-07-03 10:59:49 · 29539 阅读 · 2 评论 -
信号的相关分析 | 相关系数+相关函数+相关定理
信号的相关分析在信号的分析中,有时需要对两个以上信号的相互关系进行研究。例如在通信系统、雷达系统,甚至控制系统中,发送端发出的信号波形是已知的,在接收端信号(或回拨信号)中,也必须判断是否存在由发送端发出的信号。困难在于接受端信号中即使包含了发送端发出的信号,也往往因各种原因产生了畸变。一个很自然的想法是用已知的发送波形去与畸变了的接受波形相比较,利用它们的相似或相依性作出判断,这就需要首先解决信号之间的相似或相依性的度量问题,这正是相关分析要解决的问题。一、相关系数参考信号的正交分解叙述,当用另一个原创 2020-07-03 10:55:34 · 27351 阅读 · 5 评论 -
连续信号(八)| 傅里叶变换的性质 | 积分、微分特性 + 时域、频域卷积 + 帕斯瓦尔
傅里叶变换使任一信号可以有两种描述形式:时域描述和频域描述。1. 线性x1(t)↔FX1(w)x2(t)↔FX2(w)x_1(t)\overset{F}{\leftrightarrow}X_1(w) \\x_2(t)\overset{F}{\leftrightarrow}X_2(w)x1(t)↔FX1(w)x2(t)↔FX2(w)则a1x1(t)+a2x2(t)↔Fa1X1(w)+a2X2(w)a_1x_1(t)+a_2x_2(t)\overset{F}{\leftrightarro原创 2020-06-19 10:07:36 · 24222 阅读 · 0 评论 -
连续信号(七)| 周期信号的傅里叶变换
周期信号的傅里叶变换在一个周期内绝对可积的周期信号可以用傅里叶级数来表示,在无限区间内绝对可积的非周期信号可以用傅里叶变换来表示,分别解决了周期信号和非周期信号的频谱问题。实际上,通过在变换中引入冲激函数,可以得出周期信号的傅里叶变换,这样,就能把周期信号与非周期信号的频域分析统一起来,给分析带来便利。复指数信号ejw0te^{jw_0t}ejw0t的傅里叶变换考虑x(t)ejw0tx(t)e^{jw_0t}x(t)ejw0t的傅里叶变换为∫−∞∞ejw0te−jwtdt=∫−∞∞x(t)e原创 2020-06-19 10:03:38 · 23517 阅读 · 1 评论 -
连续信号(六) | 非周期信号的频谱分析 | 从傅里叶级数到傅里叶变换 + 非奇异信号的频谱
(三)奇异信号的频谱常见的奇异信号有单位冲激信号、单位直流信号、符号函数以及单位阶跃信号,它们往往是组成复杂信号的基本信号。它往往不完全满足狄利赫里条件,因此,通常用求极限的方法得到其频谱。单位冲激信号由于冲激函数的抽样特性,有∫−∞∞δ(t)e−jwtdt=e0=1\int_{-\infty}^{\infty}\delta(t)e^{-jwt}dt=e^0=1∫−∞∞δ(t)e−jwtdt=e0=1所以单位冲激信号的频谱为常数1,即δ(t)↔F1\delta(t) \overset原创 2020-06-19 10:01:06 · 2723 阅读 · 2 评论 -
连续信号(五) | 非周期信号的频谱分析 | 从傅里叶级数到傅里叶变换 + 非奇异信号的频谱
非周期信号的频谱分析非周期信号可以看作为周期是无穷大的周期信号,从这一思想出发,可以在周期信号频谱分析的基础上研究非周期信号的频谱。在讨论矩形脉冲信号的频谱时,我们以及指出,当τ\tauτ不变而增大周期T0T_0T0时,随着T0T_0T0的增大,谱线将越来越密,同时谱线的幅度将越来越小。如果T0T_0T0趋于无穷大时,则周期矩形脉冲信号将演变成非周期的矩形脉冲信号,可以预料,此时谱线会无限密集而演变成为连续的频谱,但与此同时,谱线的幅度将趋于零而变成无穷小量。为了避免在一系列无穷小量中讨论频谱关系,原创 2020-06-19 09:57:59 · 9672 阅读 · 2 评论 -
连续信号(四) | 周期信号的频谱分析 | 功率分配 + 傅里叶级数近似
(三)周期信号的功率分配幅度有限的周期信号是功率信号,如果把信号x(t)x(t)x(t)视为加在1Ω1\Omega1Ω电阻两端的电压或通过的电流,那么电阻上消耗的平均功率为p=1T0∫−T02T02x2(t)dtp=\frac{1}{T_0}\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}}x^2(t)dtp=T01∫−2T02T0x2(t)dt将x(t)=A02+∑n=1∞Ancos(nw0t+φn)x(t)=\frac{A_0}{2}+\sum_{n=1}原创 2020-06-19 09:53:02 · 3114 阅读 · 0 评论 -
连续信号(三) | 周期信号的频谱分析 | 傅里叶级数展开式 + 频谱特性
连续信号的频域分析由信号正交分解的思想可知,由于三角函数集是完备正交函数集,任意信号都可以分解为三角函数表达形式,换言之,任意信号都可视为一系列正弦信号的组合,这些正弦信号的频率、相位等特性势必反映了原信号的性质,这样出现了用频率域的特性来描述时间域信号的方法,即信号的频域分析法。频率特性是信号的客观性质,如光线的颜色、声音的音调,比信号的时域特性更能反映信号的基本特性。周期信号的频谱分析周期信号:x(t)=x(t+mT)m=0,±1,±2,⋯x(t)=x(t+mT) \quad m=0,\pm1原创 2020-06-19 09:51:14 · 14210 阅读 · 0 评论 -
连续信号(二)| 信号的分解 | 分解成冲激函数之和 +正交分解
信号的分解(一)分解成冲激函数之和任意信号x(t)x(t)x(t)可以近似地用一系列等宽度的矩形脉冲之和表示,如下图所示。如果矩形脉冲的宽度为Δt\Delta tΔt,则从零时刻起的第k+1个矩形脉冲可表示为x(kΔt)∣u(t−kΔt)−u[t−(k+1)Δt]∣x(k\Delta t)|u(t-k\Delta t)-u[t-(k+1)\Delta t]|x(kΔt)∣u(t−kΔt)−u[t−(k+1)Δt]∣,x(t)x(t)x(t)近似地表示为x(t)≈∑K=−∞+∞x(kΔt)∣u(t−kΔ原创 2020-06-19 09:43:42 · 4902 阅读 · 0 评论 -
连续信号(一)| 时域描述 +时域运算
连续的确定性信号是可用时域上连续的确定性函数描述的信号,是一类在描述、分析上最简单的信号,同时又是其他信号分析的基础。通常一个信号是时间的函数,在时间域内对其进行定量和定性的描述、分析是一种最基本的方法一、连续信号的时域描述用一个时间函数或一条曲线来表示信号随时间变化的特性称为连续信号的时域描述。在多种多样的连续确定性信号中,有一些信号可以用常见的基本函数表示,如正弦函数、指数函数、阶跃函数等,这类信号为基本信号,可组成复杂信号,分为普通信号和奇异信号。(一)普通信号的时域描述1.正弦信号余原创 2020-06-19 09:36:59 · 5244 阅读 · 0 评论 -
周期信号 + 能量信号与功率信号
1. 周期信号对于连续信号,若存在T>0T>0T>0,使x(t)=x(t+nT),n为整数x(t)=x(t+nT), \quad n 为整数x(t)=x(t+nT),n为整数对于离散信号,若存在大于零的整数N,使x(n)=x(n+kN),k为整数x(n)=x(n+kN), \quad k为整数x(n)=x(n+kN),k为整数则称x(t)、x(n)x(t)、x(n)x(t)、x(n)为周期信号,T和N分别为x(t)x(t)x(t)和x(n)x(n)x(n)的周期。显然,知原创 2020-06-19 09:30:19 · 7835 阅读 · 0 评论