给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
功能实现
这个算法有两种实现,第一种很简单就是两层for循环取出最大值就行了,没什么意思,所以就不再赘述了,第二种方式就是贪心法,先找到最大的横坐标,然后依次减小横坐标,变幻纵坐标,但是只能减小两个相比最小的纵坐标的横坐标,这样才能找到最大值(注释:因为我们要找最大值,如果要找最小值,那么就要更改最大纵坐标的横坐标了)
说明:你不能倾斜容器,且 n 的值至少为 2。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
代码如下:
public static void main(String[] args) {
// Vector<int> a = new Vector<int>(5);
int[] a = new int[]{1,8,6,2,5,4,8,3,7};
System.out.println(TestMaxArea.getMaxArea(a));
}
/****
* 贪心法
* 给定 n 个非负整数 a1,a2,...,an&#x