- 博客(3)
- 资源 (2)
- 收藏
- 关注
原创 机器学习:神经网络
1 神经元模型神经网络中最基本的成分是神经元模型。2 单层感知器输入节点:X1,X2,X3输出节点:y权向量: W1,W2,W3偏置因子:b激活函数:当x>=0,sign(x)=1;当x<0,sign(x)=-1。举例:取W1=W2=W3=0.5 ,b=-0.8当0.5x1+0.5x2+0.5x3-0.8>=0时,Y=1当0.5x1+0.5x2+0.5x3...
2019-06-06 16:23:09 265 1
原创 机器学习:支持向量机
1 间隔与支持向量基本思路:基于训练集D在样本空间中找到一个划分超平面,将不同类别的样本分开。直观上看,应该找位于两类训练样本“正中间”的划分超平面,即上图中红色那个。这样划分超平面所产生的分类结果是最鲁棒的,对未见示例的泛化能力最强。超平面的线性方程:其中w=(w1,w2,⋯,wN)为法向量,决定了超平面的方向,b为位移项,决定了超平面与原点之间的距离。目标:SVM寻找区分两类的超...
2019-05-30 16:22:31 260
原创 机器学习——第四章 决策树
决策树原理介绍决策树(decision tree)是一类常见的机器学习方法,目的是为了产生一棵泛化能力强,即处理未见示例能力强的决策树。划分选择决策树学习的关键在于,在每个分裂节点处如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支节点所包含的样本尽可能属于同一类别,即节点的“纯度”越来越高。信息论基础信息熵:是度量样本集合纯度最常用的一种指标,代表一个系统中蕴含...
2019-05-23 20:13:41 214
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人