概览:
数据表的处理主要是针对数据表中的数据进行行列转置、把数据表转换成树形结构、表关联等
1、行列转置
直接调用DateFrame对象的T属性:
import pandas as pd
dt=pd.read_excel('产品统计表.xlsx',sheet_name=0)
print(dt)
a=dt.T
print(a)
2、转化成树形结构
利用stack()函数
import pandas as pd
dt=pd.read_excel('产品统计表.xlsx',sheet_name=0)
print(dt)
a=dt.stack()
print(a)
3、数据表的拼接
数据表的拼接是将两个或多个数据表合并成一个表,主要会用到的函数有merge()、concat()
merge():
import pandas as pd
dt1=pd.read_excel('产品表.xlsx',sheet_name=0)
dt2=pd.read_excel('产品表.xlsx',sheet_name=1)
print(dt1)
print(dt2)
a=pd.merge(dt1,dt2,how='outer',on='员工姓名')
#how默认为inner,如果设置为outer,为外连接,与SQL类似
#on为关联条件,如果不设置,则默认两张表中所有的相同字段
print(a)
concat()函数:
import pandas as pd
dt1=pd.read_excel('产品表.xlsx',sheet_name=0)
dt2=pd.read_excel('产品表.xlsx',sheet_name=1)
#print(dt1)
#print(dt2)
a=pd.concat([dt1,dt2],ignore_index=True)
#ignore_index如果不设置,默认为False,区别为结果的首列的序列,True为重置行标签,False为保持两表原来的标签
print(a)
执行结果: