【Python机器学习】算法链与管道——构建管道

目录

1、首先,我们构建一个由步骤列表组成的管道对象。

2、向任何其他scikit-learn估计器一样来拟合这个管道

3、调用pipe.score


我们来看下如何使用Pipeline类来表示在使用MinMaxScaler缩放数据后,再训练一个SVM的工作流程(暂时不用网格搜索):

1、首先,我们构建一个由步骤列表组成的管道对象。

每个步骤都是一个元祖,其中包含一个名称(选定的任意字符)和一个估计器的示例:

from sklearn.pipeline import Pipeline
pipe=Pipeline([('scaler',MinMaxScaler()),('svm',SVC())])

这里我们创建了两个步骤:1、‘scaler’,是MinMaxScaler的实例;2、‘svm’,是SVC的实例。

2、向任何其他scikit-learn估计器一样来拟合这个管道
pipe.fit(X_tra
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值