目录
2、向任何其他scikit-learn估计器一样来拟合这个管道
我们来看下如何使用Pipeline类来表示在使用MinMaxScaler缩放数据后,再训练一个SVM的工作流程(暂时不用网格搜索):
1、首先,我们构建一个由步骤列表组成的管道对象。
每个步骤都是一个元祖,其中包含一个名称(选定的任意字符)和一个估计器的示例:
from sklearn.pipeline import Pipeline
pipe=Pipeline([('scaler',MinMaxScaler()),('svm',SVC())])
这里我们创建了两个步骤:1、‘scaler’,是MinMaxScaler的实例;2、‘svm’,是SVC的实例。
2、向任何其他scikit-learn估计器一样来拟合这个管道
pipe.fit(X_tra