Scipy

Exercise 10.1: Least squares

Generate matrix A Rm×n with m > n. Also generate some vector b Rm.Now find x = arg minx Ax b2.
Print the norm of the residual.

import numpy as np
from scipy.linalg import norm,lstsq

n = 10
m = 20
A = np.random.randint(0, 100, size=(m, n))
b = np.random.randint(0, 100, size=(m, 1))

x,res, rnk, s= lstsq(A, b) 
l = norm(b-np.dot(A,x),ord=2) 

print(A)
print(b)
print(l)

result:


其中出现了

RuntimeWarning: internal gelsd driver lwork query error, required iwork dimension not returned. This is likely the result of LAPACK bug 0038, fixed in LAPACK 3.2.2 (released July 21, 2010). Falling back to 'gelss' driver.

我上网查了一下,发现不是什么大问题,不会影响结果。



Exercise 10.2: Optimization

Find the maximum of the function

f(x) = sin2(x 2)ex2

import numpy as np
from scipy import optimize

fun = lambda x : (-1)*(np.sin(x-2))**2*np.exp((-1)*(x**2)) 

temp = optimize.minimize_scalar(fun)
ans = -temp.fun
print(temp)
print("the maximum is " + str(ans))

 result:




Exercise 10.3: Pairwise distances

Let X be a matrix with n rows and m columns. How can you compute the pairwise distances between every two rows? As an example application, consider n cities, and we are given their coordinates in two columns. Now we want a nice table that tells us for each two cities, how far they are apart. Again, make sure you make use of Scipy’s functionality instead of writing your own routine.

import numpy as np
import scipy.spatial.distance

n = 10
m = 20

X = np.random.randint(0,100,size=(n,m))
ans = scipy.spatial.distance.pdist(X, "euclidean")
print(X) 
print(ans)
result:


05-29
Scipy是一种Python的科学计算库,提供了许多有用的功能,包括数值计算、优化、统计和信号处理等。Scipy是基于Numpy库开发的,因此它支持Numpy数组和矩阵,并且可以与Numpy库和其他第三方库一起使用Scipy库中包含了许多子模块,每个子模块都包含了一组相关的函数和工具。以下是Scipy库中一些常用的子模块和功能: - scipy.integrate:提供了数值积分的函数,包括单重积分和双重积分等。 - scipy.optimize:提供了多种优化算法,包括最小化、最大化、曲线拟合和非线性方程求解等。 - scipy.stats:提供了多种统计函数,包括概率密度函数、累积分布函数和假设检验等。 - scipy.signal:提供了多种信号处理函数,包括滤波、卷积和频谱分析等。 - scipy.linalg:提供了线性代数函数,包括矩阵分解、行列式和特征值等。 - scipy.sparse:提供了稀疏矩阵的函数和工具,用于优化大规模线性代数问题。 Scipy库的使用需要先安装,可以使用pip命令进行安装: ``` pip install scipy ``` 安装完成后,可以使用以下命令来导入Scipy库: ``` import scipy ``` 要使用Scipy库中的子模块和函数,可以使用以下语法: ``` from scipy import 模块名 模块名.函数名() ``` 例如,要使用Scipy库中的最小化函数minimize,可以使用以下代码: ``` from scipy.optimize import minimize minimize() ``` Scipy库是Python中非常强大的科学计算库之一,如果你需要进行数值计算、优化、统计或信号处理等方面的工作,那么Scipy库是一个非常不错的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值