自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 30分钟构建企业级多集群应用管理平台

摘要:本文介绍如何利用Kurator开源平台快速构建企业级多集群应用分发体系。Kurator基于Kubernetes生态,提供统一资源编排、调度、流量管理和监控四大核心能力,支持跨云跨地域应用部署。文章包含30分钟快速部署指南,从环境准备到Fleet创建、集群注册、应用分发全流程,并详细讲解OverridePolicy精细化控制和灰度发布等高级功能。通过实际案例演示,展示如何将应用部署时间从数天缩短至分钟级,同时降低80%配置错误率,为多云环境下的应用管理提供高效解决方案。

2025-12-18 23:55:29 917

原创 华为CANN算子UT测试体系深度解析与实战指南

本文深入解析华为CANN异构计算架构下的算子单元测试(UT)体系,揭示其从单元测试到工业级验证的全链路实战技能。文章以达芬奇3DCube计算单元为核心,系统阐述了通过三级测试框架实现CPU/NPU双环境验证、精度自动化比对等关键技术,并提供了完整的AddCustom算子测试实例。实践表明,该测试体系可将问题定位时间缩短85%,实现100%代码分支覆盖和float16千分之一精度验证。文章还包含企业级测试流水线方案、六大测试问题诊断工具等实用内容,为开发者构建完整的异构计算测试技术图谱。

2025-12-16 18:48:40 1021

原创 Ascend C复杂融合算子实现深度解析与实战指南

本文基于昇腾开发实战经验,系统阐述了CANN框架下复杂融合算子的实现体系。通过四层融合架构设计、MC²通算融合算法等关键技术,实现了算子开发周期从月级到周级的突破,模型推理吞吐提升2-4倍。文章详细解析了硬件特性映射、计算访存比优化等核心原理,并提供了RMSNorm+SwiGLU融合算子的完整实现案例。针对企业级实践中的性能优化、故障排查等问题,给出了具体解决方案和工具链建议。最后展望了智能编译优化、统一编程等未来发展方向,为开发者提供了从算法到硬件的全栈优化方法论。

2025-12-16 17:53:13 860

原创 Ascend C算子性能调优实战:当计算耗时超过基线时该怎么办?

在昇腾AI处理器上进行算子开发时,性能不达标是开发者面临的最常见挑战之一。本文基于250+真实错误案例的深度分析,结合多年高性能计算优化经验,系统剖析CANN架构下算子性能问题的多层次调优方法论。我们将从性能基线概念出发,深入解析达芬奇架构的计算资源模型内存带宽瓶颈流水线停顿等核心问题,提供一套从性能分析、瓶颈定位到优化实现的完整解决方案。通过本文,您将掌握在CANN异构计算环境中,将算子性能从"未达标"提升到"超越基线"的实战能力。

2025-12-15 19:41:31 1071

原创 Hello World的深度演进:一个Ascend C标量算子的性能剖析之旅

本文以Element-wiseAdd算子为例,详细剖析了AscendC在CANN全栈中的性能优化路径。通过实测数据展示了从朴素实现(200GFLOPS)到极致优化(1.8TFLOPS)的完整演进过程,关键优化技术包括:三级存储体系协同、双缓冲流水线设计、计算单元负载均衡和指令级并行优化。文章提供了完整的代码演进案例和五维性能评估体系,将硬件利用率从23%提升至89%,为复杂算子优化提供了方法论框架。同时分享了企业级实践案例和13年经验总结的优化技巧,并对AscendC的未来技术演进方向进行了展望。

2025-12-15 19:14:12 648

原创 Ascend C算子编程范式解析 - 从Kernel拆解到工程化开发

本文系统介绍了昇腾NPU算子开发的优化方法论,提出"三段式"心法:Kernel拆解、Tiling技术和工程化落地。作者强调要从"串行执行"转向"并行调度与资源编排"的思维转变,将复杂算子分解为数据搬运、核心计算和结果回写三部分。通过DepthwiseConv1x3案例,展示了如何通过分块策略、双缓冲技术和向量化编程实现4.2倍加速。文章还详细阐述了工程化开发流程,包括设计文档、模块化编码、自动化测试和性能分析,为开发者提供了一套从理论到实践的完整优

2025-12-11 18:00:40 995

原创 Host侧算子实现总览-解码Ascend C算子的“CPU端蓝图“

本文深入探讨AscendC算子开发中Host侧的核心技术与工程实践,揭示其作为异构计算"指挥中枢"的关键作用。文章系统阐述了Host-Device协同架构、动态Shape自适应、Tiling机制等核心技术,并通过完整的矩阵乘法算子案例展示从参数校验到任务调度的全链路实现。重点分析了企业级性能优化策略,包括四维技术矩阵(内存优化、调度优化、计算优化、通信优化)和智能动态调优框架,同时提供生产级故障排查方案。文章指出未来Host侧技术将向AI驱动优化、跨平台统一抽象等方向发展,为开发者提供了

2025-12-11 16:33:30 554

原创 Ascend C 性能调优实战:从工具使用到指令级优化

本文系统介绍了AI芯片性能优化的实战方法,重点针对AscendC代码的性能提升。通过工具链分析、架构级优化和指令级技巧,结合InternVL3、YOLOv7等大模型案例,详细展示了如何从内存访问、计算密度、指令调度等关键维度突破性能瓶颈。文章提供了完整的性能调优流程、优化心法和实用工具箱,包含分块计算、向量化、指令调度等核心技术,帮助开发者将算子性能提升数倍。最后分享了昇腾训练营信息,为开发者提供深入学习机会。

2025-12-07 22:39:34 663

原创 昇腾Ascend C单算子API调用指南 - 在Python中直接调用硬件算子

本文直击昇腾AI开发者最实际的需求:当你手搓了一个高性能Ascend C算子后,如何在Python中像调用一样轻松地使用它?官方Aclnn接口调用与灵活Pybind封装。文章将用大白话讲清楚两者背后的“套路”、各自的“脾气”和“适用场景”,并通过一个完整的LayerNorm算子案例,手把手带你从算子二进制文件走到Python接口,最终实现“import my_op as npu_op”的流畅体验。你会彻底搞懂内存对齐、异步执行、Stream管理等“坑”,真正把硬件算力无缝融入你的AI应用。

2025-12-06 21:04:18 1068

原创 Ascend C 调试技巧大全 - 从Printf到Profiler的完整问题定位流程

本文系统介绍了AscendC算子开发的调试技术体系。首先阐述了AscendC调试面临的三大挑战:环境隔离、数据不可见和时序敏感性,提出孪生调试体系作为解决方案。详细讲解了从基础调试技巧(Printf/GDB)到高级技术(DumpTensor/msprof)的全套方法,并针对内存问题和性能优化给出了具体实践。通过4个实战案例展示了复杂问题的调试流程,包括精度误差和多核死锁的定位解决。最后总结了调试效率提升策略和交付检查清单,展望了智能化调试的未来发展方向。文章为AscendC开发者提供了一套完整的调试方法论,

2025-12-06 20:55:10 681

原创 AsNumpy 精度控制与 Ascend C 浮点运算优化

本文深入解析 AsNumpy 在 NPU 浮点计算中的精度控制机制与优化策略。针对昇腾 Ascend 处理器的达芬奇架构,探讨 IEEE 754 浮点标准在异构计算中的实现差异,以及 Ascend C 如何通过混合精度计算、Kahan 求和、动态缩放等技术,在保证数值精度的前提下实现性能提升。文章包含精度验证框架、性能对比数据和实战优化指南。硬件感知的精度架构:针对 NPU 达芬奇架构优化智能精度决策:动态混合精度与损失缩放数值稳定性增强:Kahan 求和、动态缩放、梯度裁剪确定性计算保证。

2025-12-05 23:56:34 626

原创 FlashAttention融合算子深度剖析:如何实现多类别注意力机制

🚀 FlashAttention技术解析与优化实践 本文系统阐述了FlashAttention在CANN架构中的实现原理与优化策略。通过分块计算、内存层次优化和在线Softmax算法,将注意力机制的IO复杂度从O(N²)降至线性,内存占用减少90%以上。核心创新包括: 统一架构设计:支持多头/交叉/稀疏注意力等变体,兼容主流框架; 硬件协同优化:针对Ascend芯片定制分块策略,实现3-8倍速度提升; 企业级实践:在万亿参数模型中验证,序列长度支持扩展至65K; 混合精度训练:动态选择FP16/BF16/

2025-12-05 23:36:48 748

原创 PerToken量化技术在Ascend C中的实现 - 动态精度适配与大模型推理加速

本文深入解析PerToken量化技术在AscendC中的实现原理,探讨动态精度适配、Token级量化等核心技术。PerToken量化通过动态精度适配实现3-5倍推理加速,同时保持99%+的精度保持率。文章详细分析其数学模型、硬件适配优化及核心算法实现,展示混合精度PerToken量化在大模型推理中的革命性价值。实战案例验证了BERT、GPT等模型的显著性能提升,并提供了高级优化技巧和量化验证框架。该技术代表了大模型推理优化的前沿方向,需结合模型理解、算法知识和系统工程经验才能实现精度与性能的完美平衡。

2025-12-04 17:57:43 1034

原创 展望未来:Ascend C与下一代AI编程模型的思考

本文前瞻性分析AscendC与下一代AI编程模型的演进路径,基于硬件架构、软件栈和算法创新三维视角,提出自适应编程范式、AI原生语言等发展方向。通过量子启发计算、神经符号编程等案例展示AI编程的根本性变革,包含达芬奇架构演进预测和硬件-软件协同设计方案。研究预测2030年AI计算将实现100TFLOPS/W能效比,提出三阶段演进战略:增强期(2025-27)扩展语法支持、融合期(2028-30)引入AI原生特性、引领期(2031+)实现全自动编程。为企业提供技术储备路线图,建议开发者掌握现有AscendC的

2025-12-04 17:48:14 1042

原创 Ascend C任务全流程解析:从报名到交付的高效协作指南

本文深度解析昇腾CANN训练营AscendC社区任务全流程,聚焦中级认证通关、团队协作与里程碑管理三大核心。通过6个Mermaid流程图、代码模板及性能优化数据(双缓冲技术提升5.6倍),系统阐述从Host-Device架构到故障排查的实战要点。文章揭示精英筛选机制背后的资源优化逻辑(前三录取规则),并给出进度管理模板与3人黄金团队模型。关键数据:中级认证通过率约70%,Tiling和Kernel编程是主要技术门槛。为开发者提供从"学习者"到"贡献者"的完整方法论。

2025-12-03 19:51:00 910

原创 Ascend C内存管理详解 - Local Buffer与Global Memory的高效协作

本文深度解析昇腾平台内存架构的核心设计理念。从Local Buffer与Global Memory的协同机制入手,详细讲解内存层次结构、数据搬运优化、Bank Conflict避免等关键技术。通过实际性能数据和完整代码示例,展示如何通过高效内存管理实现3-5倍的性能提升。涵盖企业级实战案例、高级调试技巧和性能优化策略,为开发者提供从理论到实践的完整内存优化方案。昇腾训练营简介。

2025-12-03 19:33:55 813

原创 Triton - Ascend算子内存管理实战:从架构原理到企业级优化

本文深入解析Triton在昇腾AI处理器上的内存管理机制,涵盖内存层次架构、数据布局优化、缓存策略等核心技术。通过完整代码示例和性能分析,展示如何通过内存管理优化提升算子性能2-5倍。文章包含昇腾平台特有的UB缓存管理、原子操作避坑指南、企业级实战案例,为AI开发者提供从入门到精通的完整内存优化解决方案。基于实际项目经验,分享独特优化见解和前瞻性思考,帮助读者掌握高性能算子开发的关键技能。分块是基础:合理分块匹配硬件缓存层次,是优化内存性能的基石局部性是关键:通过数据布局优化提高空间和时间局部性。

2025-12-02 14:37:19 1087

原创 容器化部署与实践 - Triton-on-Ascend开发环境搭建与运维指南

本文系统阐述了Triton-on-Ascend开发环境的容器化全流程解决方案。通过容器化架构设计、Docker/Kubernetes生产级部署、存储网络配置、CI/CD流水线等核心模块,实现开发环境从分钟级搭建到智能化运维的完整闭环。实践表明,该方案使环境准备时间从天级降至分钟级,资源利用率提升25-35%,故障恢复时间缩短70%,显著提升AI开发效率。文章包含大量已验证的配置文件与运维脚本,为开发者提供从理论到落地的完整参考。

2025-12-02 13:57:36 956

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除