自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 收藏
  • 关注

原创 第八节 多元函数的极值及其求法

在(一)中讨论的都是无条件极值,但在实际生活中的问题多数是对自变量加有条件的,这时我们便使用拉格朗日乘数法。至于求出来的点是不是极值点,在实际问题中往往根据问题本身的性质来判定。最值产生于边界值和极值,只要找出极值,再找出边界值的最值,便可取出函数的最大最小值。如果函数在个别点的偏导数不存在,这些点虽不是驻点,但可能是极值点。求驻点(对每个未知数的偏导数都为0的点)求偏导数 令这些偏导数都等于0,求出来点坐标。的某邻域内有连续且有一阶及二阶连续偏导数,又。是不是极值点、是极大值点还是极小值点。

2023-04-08 10:48:46 5064 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除