自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(54)
  • 收藏
  • 关注

原创 Day7:生信新手笔记——测序知识初步

生物信息:测序知识初步。

2024-12-06 06:26:07 591

原创 Day6:生信新手笔记 — R包安装与R包使用

学习R包与R语言。

2024-12-05 06:32:37 1432

原创 Day5:生信新手笔记 — R语言基本语法

R语言基本语法

2024-12-04 06:34:17 721

原创 Day4:生信新手笔记 — R语言简单命令与Rstudio配置

即当前所在的目录,是脚本、图片、文件的默认保存位置,也是文件读取的默认位置。R语言只能和一个文件夹进行互动,这个文件夹非常重要,做不好就会导致你的脚本、文件、图片各种乱跑,找不到。

2024-12-03 05:23:51 630

原创 Day3:生信新手笔记:Linux安装软件fastqc

生物信息基础:Linux 安装软件 fastqc

2024-12-02 01:17:27 1161

原创 Day2 生信新手笔记: Linux基础

Linux基本命令,学习生物信息的基础。

2024-12-01 04:21:35 470

原创 Day1 生信新手笔记

生信学习第一天笔记打卡。转录组学中:上游分析-基于linux,包括质控、过滤、比对、定量;下游分析-基于R语言,包括差异分析、富集分析、可视化。

2024-11-30 04:40:43 610

原创 晒一下阿里云云计算ACA证书

2021-08-30 15:37:03 703 1

原创 《Linux就该这么学》day18:文件共享服务Samba, NFS和autofs

2021-05-14 16:28:37 160

原创 《Linux就该这么学》day17:使用vsftpd服务传输文件

2021-05-14 16:23:40 173

原创 《Linux就该这么学》day16:Apache服务和SELinux设置

2021-05-14 16:10:39 142

原创 《Linux就该这么学》day15:使用ssh服务管理远程主机

2021-05-14 16:04:38 72

原创 《Linux就该这么学》day12:防火墙iptables和firewalld

2021-05-06 08:31:19 104

原创 《Linux就该这么学》day11:★逻辑卷LVM+配置网卡4种方法+配置yum/dnf软件仓库

2021-04-29 10:57:02 104

原创 《Linux就该这么学》day10:磁盘阵列RAID技术

2021-04-27 01:46:29 96

原创 《Linux就该这么学》day09:磁盘设备管理

2021-04-24 15:41:50 89

原创 《Linux就该这么学》day08:文件权限和sudo

2021-04-24 15:36:14 93

原创 《Linux就该这么学》day07:用户身份与文件权限

2021-04-18 02:55:14 173

原创 《Linux就该这么学》day06:Shell命令

2021-04-14 06:01:07 83

原创 《Linux就该这么学》day05:Vim编辑器和Shell命令

2021-04-13 14:57:05 79

原创 《Linux就该这么学》day04:管道符和重定向

2021-04-12 01:11:47 107

原创 《Linux就该这么学》day03:常用的Linux基础命令

2021-04-06 13:55:12 100

原创 《Linux就该这么学》day02:安装虚拟机和红帽系统

2021-04-05 22:14:50 110

原创 《Linux就该这么学》day01:红帽系统介绍

2021-04-05 05:31:07 337

原创 Linux中文件颜色的总结

Linux中一切都是文件;要想配置一个服务,就要去修改该服务对应的配置文件;要想让该服务立刻生效,需要重启该服务。关于Linux中不同文件颜色的含义总结如下:蓝色:目录文件(directory)白色:普通文件(regular)绿色:可执行文件(executable)红色:压缩文件 (.tar.gz 和 .tar.bz2)黄色:设备文件(block, character, fifo)淡蓝色:链接文件 (link)粉红色:图片文件或套接字文件(socket)灰色:其他文件 (other

2021-04-01 02:58:05 805

原创 Linux命令行输入中非常有用的快捷键总结

下面的ctrl代表键盘左下角的control键,alt代表空格按键旁边的alter键,小写字母(比如a)代表键盘上的a按键。Linux命令行输入中有用的快捷键如下:ctrl + a 回到本行命令的开头ctrl + e 回到本行命令的结尾ctrl + u 一次性删除本行正在输入的命令ctrl + l 清空所有屏幕内容,让屏幕看起来更整洁。 这里的l是L键,即letter的首字母。tab 在敲命令时经常按下tab键会自动补全单词或命令。

2021-04-01 02:35:38 1407

原创 用VMware虚拟机安装红帽RHEL8出现“此主机不支持64位客户机操作系统”的问题

主机Win10,用VMware15.5虚拟机安装红帽RHEL8系统,在安装到客户机选择“版本”的步骤时,报出“此主机不支持64位客户机操作系统”的错误,导致无法安装。 由于之前主机启用了Hyper-V 管理器,导致了相互之间的不兼容。 解决办法: 按住win+r键打开运行输入框,输入cmd,以管理员身份,调出命令提示符窗口,输入: bcdedit /set hypervisorlaunchtype off 如下图管理员: 命令提示符Micros...

2021-03-12 00:20:16 1152

原创 晒一下阿里云人工智能方向的ACA证书~~

2021-02-26 01:36:44 1597 3

原创 短小精悍算例: 用Python求矩阵的秩和逆矩阵

1、用Python求解矩阵的秩import numpy as npa = np.array([[1, 2, 3], [3, 5, 6], [1, 3, 5]])# 求矩阵的秩print(np.linalg.matrix_rank(a))结果: 32、用Python求解矩阵的逆矩阵# 求逆矩阵print(np.linalg.inv(a))结果: array([[ 7., -1., -3.], [-

2021-02-26 01:05:00 2198

原创 解决Jupyter Notebook不能用tab键自动提示补全的问题

解决Jupyter Notebook不能用tab键自动提示补全的问题Jupyter中经常碰到无法使用Tab键自动补全的问题,原因是jedi库版本太新了,不兼容。查看jedi库的版本,在cmd中输入:pip show jedi显示:Name: jediVersion: 0.18.0这是最新版本,换一个低版本的库,在cmd中输入:pip install jedi==0.17.0Jupyter Notebook就可以用tab键自动提示的功能了!完美解决~~~...

2021-02-26 00:47:02 6022 6

原创 短小精悍算例:Python中zip()函数的用法

x = [1, 2, 3]y = ['a', 'b', 'c']z = zip(x, y) # x和y中元素一一对应上print(dict(z)) # 以字典形式输出输出结果:{1: 'a', 2: 'b', 3: 'c'}

2020-05-20 15:59:10 161

原创 短小精悍算例:Python中用astype()函数转换数据类型

把64位浮点数据转换为32位。import numpy as npa=np.array([1.0, 2.0, 3.0])print("a的数据类型:", a.dtype)b=a.astype('float32') # 转行数据类型print("b的数据类型:", b.dtype)输出结果:a的数据类型: float64b的数据类型: float32...

2020-05-19 03:14:47 2221

原创 短小精悍算例:TensorFlow中的softmax函数求模拟概率

已知一个数组:X=[x1, x2, x3] ( exp(x代表幂指数 )x1的模拟概率为:p(x1)=exp(x1) / ( exp(x1)+exp(x2)+exp(x3))x2的模拟概率为:p(x2)=exp(x2) / ( exp(x1)+exp(x2)+exp(x3))x3的模拟概率为:p(x3)=exp(x3) / ( exp(x1)+exp(x2)+exp(x3))import tensorflow as tfx = tf.constant([[0.1, 0.2, 0.5],

2020-05-16 01:41:30 376

原创 短小精悍算例:TensorFlow中tf.argmax()函数的使用-返回最大值的位置索引

import numpy as np import tensorflow as tfx = np.array([[3, 1, 2], [4, 7, 3], [5, 0, 1], [2, 4, 6]])a = tf.argmax(x, axis=0) # 求各列最大值b = tf.argmax(x, axis=1) # 求各行最大值sess = tf.Session()print(sess.run(a))

2020-05-15 23:33:41 935 2

原创 短小精悍算例:TensorFlow中concat()函数实现矩阵拼接操作

import tensorflow as tfimport numpy as npA = tf.placeholder(dtype=tf.float32, shape=[2, 2])#矩阵连接操作,在大型神经网络中用的比较多AA0 = tf.concat([A, A], axis=0) #上下拼接AA1 = tf.concat([A, A], axis=1) #左右拼接#初始化init = tf.global_variables_initializer()sess = tf.Sessi

2020-05-15 14:39:22 973

原创 短小精悍算例:TensorFlow中使用cast()函数转换数据类型

import tensorflow as tfimport numpy as npA = tf.placeholder(dtype=tf.float32, shape=[2, 2])B = tf.cast(A, tf.float64)print(A.dtype,B.dtype)输出结果:<dtype: 'float32'> <dtype: 'float64'>A是32位浮点型,转换为B后是64位浮点型。...

2020-05-15 14:29:53 235

原创 短小精悍算例:TensorFlow中placeholder的使用举例

TensorFlow中placeholder用于接收外部数据,见如下算例。import tensorflow as tfimport numpy as np# 定义变量a = tf.Variable(np.ones([4, 4]))# 定义placeholder,起到接受数据的作用b = tf.placeholder(dtype=tf.float64, shape=[4, 4])# 变量初始化(必不可少的环节)init = tf.global_variables_initializer()

2020-05-15 13:49:24 191

原创 短小精悍算例:TensorFlow通过定义变量实现矩阵乘法

import tensorflow as tfimport numpy as np#定义变量b1 = tf.Variable(np.ones([4, 4])*2)b2 = tf.Variable(np.ones([4, 4]))#定义矩阵乘法b1_elementwise_b2 = b1 * b2 # 对应元素相乘b1_dot_b2 = tf.matmul(b1, b2) # 矩阵乘法#variable需要初始化init = tf.global_variables_initializ

2020-05-13 23:09:54 179

原创 短小精悍算例:TensorFlow实现两个矩阵的相乘运算

import tensorflow as tfimport numpy as npa1 = tf.constant(np.ones([4, 4]))a2 = tf.constant(np.ones([4, 4])*0.3)sess = tf.Session() # 开启一个会话print(sess.run(a1),'\n') # 打印矩阵a1print(sess.run(a2),'\n') # 打印矩阵a2print(sess.run(a1@a2)) # 打印矩阵a1*a2输

2020-05-13 22:49:08 812

原创 短小精悍算例:Python中快速产生多行多列空值None列表

方法1:利用Numpyimport numpy as npa=np.zeros([5,3])a[a==0.0]=Nonea=a.tolist()print(a)方法2:利用for循环c=[[None for j in range(3)] for i in range(5)]print(c)结果都是如下:5行3列[[nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan]

2020-05-13 02:18:01 1283

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除