- 博客(54)
- 收藏
- 关注
原创 Day4:生信新手笔记 — R语言简单命令与Rstudio配置
即当前所在的目录,是脚本、图片、文件的默认保存位置,也是文件读取的默认位置。R语言只能和一个文件夹进行互动,这个文件夹非常重要,做不好就会导致你的脚本、文件、图片各种乱跑,找不到。
2024-12-03 05:23:51
630
原创 Day1 生信新手笔记
生信学习第一天笔记打卡。转录组学中:上游分析-基于linux,包括质控、过滤、比对、定量;下游分析-基于R语言,包括差异分析、富集分析、可视化。
2024-11-30 04:40:43
610
原创 Linux中文件颜色的总结
Linux中一切都是文件;要想配置一个服务,就要去修改该服务对应的配置文件;要想让该服务立刻生效,需要重启该服务。关于Linux中不同文件颜色的含义总结如下:蓝色:目录文件(directory)白色:普通文件(regular)绿色:可执行文件(executable)红色:压缩文件 (.tar.gz 和 .tar.bz2)黄色:设备文件(block, character, fifo)淡蓝色:链接文件 (link)粉红色:图片文件或套接字文件(socket)灰色:其他文件 (other
2021-04-01 02:58:05
805
原创 Linux命令行输入中非常有用的快捷键总结
下面的ctrl代表键盘左下角的control键,alt代表空格按键旁边的alter键,小写字母(比如a)代表键盘上的a按键。Linux命令行输入中有用的快捷键如下:ctrl + a 回到本行命令的开头ctrl + e 回到本行命令的结尾ctrl + u 一次性删除本行正在输入的命令ctrl + l 清空所有屏幕内容,让屏幕看起来更整洁。 这里的l是L键,即letter的首字母。tab 在敲命令时经常按下tab键会自动补全单词或命令。
2021-04-01 02:35:38
1407
原创 用VMware虚拟机安装红帽RHEL8出现“此主机不支持64位客户机操作系统”的问题
主机Win10,用VMware15.5虚拟机安装红帽RHEL8系统,在安装到客户机选择“版本”的步骤时,报出“此主机不支持64位客户机操作系统”的错误,导致无法安装。 由于之前主机启用了Hyper-V 管理器,导致了相互之间的不兼容。 解决办法: 按住win+r键打开运行输入框,输入cmd,以管理员身份,调出命令提示符窗口,输入: bcdedit /set hypervisorlaunchtype off 如下图管理员: 命令提示符Micros...
2021-03-12 00:20:16
1152
原创 短小精悍算例: 用Python求矩阵的秩和逆矩阵
1、用Python求解矩阵的秩import numpy as npa = np.array([[1, 2, 3], [3, 5, 6], [1, 3, 5]])# 求矩阵的秩print(np.linalg.matrix_rank(a))结果: 32、用Python求解矩阵的逆矩阵# 求逆矩阵print(np.linalg.inv(a))结果: array([[ 7., -1., -3.], [-
2021-02-26 01:05:00
2198
原创 解决Jupyter Notebook不能用tab键自动提示补全的问题
解决Jupyter Notebook不能用tab键自动提示补全的问题Jupyter中经常碰到无法使用Tab键自动补全的问题,原因是jedi库版本太新了,不兼容。查看jedi库的版本,在cmd中输入:pip show jedi显示:Name: jediVersion: 0.18.0这是最新版本,换一个低版本的库,在cmd中输入:pip install jedi==0.17.0Jupyter Notebook就可以用tab键自动提示的功能了!完美解决~~~...
2021-02-26 00:47:02
6022
6
原创 短小精悍算例:Python中zip()函数的用法
x = [1, 2, 3]y = ['a', 'b', 'c']z = zip(x, y) # x和y中元素一一对应上print(dict(z)) # 以字典形式输出输出结果:{1: 'a', 2: 'b', 3: 'c'}
2020-05-20 15:59:10
161
原创 短小精悍算例:Python中用astype()函数转换数据类型
把64位浮点数据转换为32位。import numpy as npa=np.array([1.0, 2.0, 3.0])print("a的数据类型:", a.dtype)b=a.astype('float32') # 转行数据类型print("b的数据类型:", b.dtype)输出结果:a的数据类型: float64b的数据类型: float32...
2020-05-19 03:14:47
2221
原创 短小精悍算例:TensorFlow中的softmax函数求模拟概率
已知一个数组:X=[x1, x2, x3] ( exp(x代表幂指数 )x1的模拟概率为:p(x1)=exp(x1) / ( exp(x1)+exp(x2)+exp(x3))x2的模拟概率为:p(x2)=exp(x2) / ( exp(x1)+exp(x2)+exp(x3))x3的模拟概率为:p(x3)=exp(x3) / ( exp(x1)+exp(x2)+exp(x3))import tensorflow as tfx = tf.constant([[0.1, 0.2, 0.5],
2020-05-16 01:41:30
376
原创 短小精悍算例:TensorFlow中tf.argmax()函数的使用-返回最大值的位置索引
import numpy as np import tensorflow as tfx = np.array([[3, 1, 2], [4, 7, 3], [5, 0, 1], [2, 4, 6]])a = tf.argmax(x, axis=0) # 求各列最大值b = tf.argmax(x, axis=1) # 求各行最大值sess = tf.Session()print(sess.run(a))
2020-05-15 23:33:41
935
2
原创 短小精悍算例:TensorFlow中concat()函数实现矩阵拼接操作
import tensorflow as tfimport numpy as npA = tf.placeholder(dtype=tf.float32, shape=[2, 2])#矩阵连接操作,在大型神经网络中用的比较多AA0 = tf.concat([A, A], axis=0) #上下拼接AA1 = tf.concat([A, A], axis=1) #左右拼接#初始化init = tf.global_variables_initializer()sess = tf.Sessi
2020-05-15 14:39:22
973
原创 短小精悍算例:TensorFlow中使用cast()函数转换数据类型
import tensorflow as tfimport numpy as npA = tf.placeholder(dtype=tf.float32, shape=[2, 2])B = tf.cast(A, tf.float64)print(A.dtype,B.dtype)输出结果:<dtype: 'float32'> <dtype: 'float64'>A是32位浮点型,转换为B后是64位浮点型。...
2020-05-15 14:29:53
235
原创 短小精悍算例:TensorFlow中placeholder的使用举例
TensorFlow中placeholder用于接收外部数据,见如下算例。import tensorflow as tfimport numpy as np# 定义变量a = tf.Variable(np.ones([4, 4]))# 定义placeholder,起到接受数据的作用b = tf.placeholder(dtype=tf.float64, shape=[4, 4])# 变量初始化(必不可少的环节)init = tf.global_variables_initializer()
2020-05-15 13:49:24
191
原创 短小精悍算例:TensorFlow通过定义变量实现矩阵乘法
import tensorflow as tfimport numpy as np#定义变量b1 = tf.Variable(np.ones([4, 4])*2)b2 = tf.Variable(np.ones([4, 4]))#定义矩阵乘法b1_elementwise_b2 = b1 * b2 # 对应元素相乘b1_dot_b2 = tf.matmul(b1, b2) # 矩阵乘法#variable需要初始化init = tf.global_variables_initializ
2020-05-13 23:09:54
179
原创 短小精悍算例:TensorFlow实现两个矩阵的相乘运算
import tensorflow as tfimport numpy as npa1 = tf.constant(np.ones([4, 4]))a2 = tf.constant(np.ones([4, 4])*0.3)sess = tf.Session() # 开启一个会话print(sess.run(a1),'\n') # 打印矩阵a1print(sess.run(a2),'\n') # 打印矩阵a2print(sess.run(a1@a2)) # 打印矩阵a1*a2输
2020-05-13 22:49:08
812
原创 短小精悍算例:Python中快速产生多行多列空值None列表
方法1:利用Numpyimport numpy as npa=np.zeros([5,3])a[a==0.0]=Nonea=a.tolist()print(a)方法2:利用for循环c=[[None for j in range(3)] for i in range(5)]print(c)结果都是如下:5行3列[[nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan]
2020-05-13 02:18:01
1283
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人