回溯算法题(11)全排列

该博客探讨了如何使用回溯法解决全排列问题,即给定一个不包含重复数字的数组,找出所有可能的排列组合。通过示例代码展示了一个基于Java的回溯算法实现,该算法在数组长度为1到6且元素互不相同的条件下有效。博客内容详细解释了算法的思路和步骤,适合对算法和回溯法感兴趣的读者学习。
摘要由CSDN通过智能技术生成

目录

全排列

描述

示例 1

示例 2

示例 3

提示

方法:回溯法


全排列

描述

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例 2

输入:nums = [0,1]
输出:[[0,1],[1,0]]

示例 3

输入:nums = [1]
输出:[[1]]

提示

  • 1 <= nums.length <= 6
  • -10 <= nums[i] <= 10
  • nums 中的所有整数 互不相同

方法:回溯法

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> cur = new ArrayList<>();
    int n;
    int[] arr;
    boolean[] isChoosed;

    public List<List<Integer>> permute(int[] nums) {
        n = nums.length;
        arr = nums;
        isChoosed = new boolean[nums.length];
        backTrace(0);
        return res;
    }

    public void backTrace(int index) {
        if (index == n) {
            res.add(new ArrayList<>(cur));
        }else{
            for (int i = 0; i < n; i++) {
                if (!isChoosed[i]) {
                    cur.add(arr[i]);
                    isChoosed[i] = true;
                    backTrace(index + 1);
                    isChoosed[i] = false;
                    cur.remove(cur.size() - 1);
                }
            }
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值