文章目录
组合数学简介
一 什么是组合数学
组合数学,亦称组合论、组合学,亦研究离散数学中的排列组合问题,研究的是计数技巧。
组合数学在数学发展史出现的阶段:
组合数学研究具有一定规格的事物。
事物是否存在,有多少种,是否可以变得更好,
即:对应组合数学研究的三大问题:存在性,技术性,优化性。
思考: 组合数学起源?
二 最精巧的排列—幻方
1. 幻方历史背景
(1) 大禹治水神龟背上的幻方
每行每列或者对角线之和均为15.
(2) 历史研究幻方第一人
南宋数学家杨辉(杨辉三角请参照文章:杨辉三角)著作:《续古摘奇算法》
(3) 西方幻方
德国画家画作:《忧郁》 时间:1514年
(4) 幻方–宇宙奥秘
2. 幻方定义及计算
(1) 定义
定义:方阵中,使每行、列和对角线上的数字和都相等的方法。
幻和:行/列的整数和为该幻方的幻和。
(2) 存在性
二阶幻方存在性
又因为:
与幻方定义相矛盾,所以假设不成立。二阶幻方不存在。
三阶及以上幻方存在性
(3) 怎样构造
杨辉构造三阶幻方:
杨辉洛书构作曲:“九子排列,上下对易,左右相更,四维挺出”
奇次幻方构造:原理:数字依次从左下到右上顺序摆放,并且整个方阵循环往复,循环往复位置被占用,则回到上一数字的下方。
4m阶幻方 ,4m+2阶幻方构造。
(4) 多样性
- 二阶幻方没有
- 三阶幻方只有一个
- 四阶幻方基本形式:880个,允许翻转旋转7040个
- 五阶幻方:2亿七千多万
- 六阶幻方:1.77×1019次方左右
(5) 独特幻方
特殊幻方一:
包中祥2008年奥运“完美幻方”
特殊幻方二:
特点:
- 每块幻方对角之和均相等。
- 分为九个三阶幻方。
- 九个三阶幻方的幻和构成三阶幻方,且构成以首项为111,末项为135,公差为3的等差数列。
***幻方的世界很奇妙,有兴趣的可以继续探索。***
思考: 西方组合数学起源?
三 苦难的羊皮纸
阿基米德羊皮卷经文开辟了西方组合数学的篇章。
经文下面的论文即为十四巧板问题,即:如果这14个巧板可以构成1个正方形,我们由多少种方法把这14个巧板重新放回这个正方形里呢?
计算机学家:暴力枚举,数学家:排列组合方法。得出17152种组合。
1666年,莱布尼茨发表《组合的艺术》,这是组合数学的第一部专著,首次使用组合论一词,标志着组合数学的诞生。
思考: 了解了东西方的组合数学的起源,那么与现实生活有什么联系呢?
四 你的手机密码安全吗


组合数学界泰斗级的大师,Thomas Tutte用组合数学的方法帮助破解了德国的洛伦兹密码。
手机密码问题:


如果选择两个点连成的线段,穿越了第三个点,如果之前这三个点没有被连过,则不合法;反之,则合法。所以要去除不合理的情况。
通过计算机枚举计算得出一共:389112种。
对比:
安卓手机389112种。 (更安全)
iphone手机4位密码10000种。
如果设手机用4位密码,结果只有1624个,五位密码7152个。计算小于6位8776个,安全系数相对于iphone低。
计数根本原则:无重复、无遗漏将所有合理的方案都囊括其中。
思考:组合数学的思想是什么?
五 世界杯引出的问题
问题:世界杯16支球队进行比赛,规则:一场比赛输者离开,那么能踢多少场比赛?
方式一:构建一个树形赛程表,那么有没有更好的方式呢?
方式二:每场比赛淘汰一个,淘汰球队个数对应比赛场数,16支球队淘汰15个,进行了15场比赛。
方式二处理很多支球队时就会显得更加便捷,快速。如果有n支球队参加比赛,最终需要的复赛数就是:n-1场。
六 七桥问题
哥尼斯堡七桥问题:从一处出发,怎样不重复的走完七座桥。


欧拉思想:转化为,在右图的基础上,能不能一笔画出所有边,即“一笔画”问题。
并给出欧拉一笔画问题充要条件:

所以再来看哥尼斯堡七桥问题,无可解方案。
当奇数点少了两个,奇数点的个数为2,根据欧拉思想,就有了可行解

那么有多少种不同的可行解呢?
欧拉论文种给出:奇数点为0,也即全全是偶数点时,完全一笔画,需要从一个偶数点出发再回到出发偶数点;奇数点为2,完全一笔画,需要从一个奇数点出发再回到另外一个奇数点。
所以六桥遍历问题就会大大简化。
这些问题对应计算机算法—–无重复遍历所有边,找出欧拉路问题。
组合数学用抽象的思维让枚举变得更精巧,敏捷。
七 总结
组合数学要达到的目的:
抽象能力,转换视角,是一门充满魅力的学科.