TensorFlow
文章平均质量分 95
疯狂的兔子Philip
这个作者很懒,什么都没留下…
展开
-
Tensorflow学习——Eager Execution
Eager Execution目录1.设置和基本用法2.动态控制流3.构建模型4.Eager训练计算梯度 训练模型 变量和优化器5.在Eager Execution期间将对象用于状态变量是对象 基于对象的保存 面向对象的指标6.自动微分高级内容动态模型 计算梯度的其他函数 自定义梯度7.性能基准8.处理图编写兼容的代码 在图环境中使用...转载 2018-09-06 22:45:37 · 4586 阅读 · 5 评论 -
【转载】使用tf.py_func函数增加Tensorflow程序的灵活性
转自:https://blog.csdn.net/jiongnima/article/details/80555387目录 tf.py_func函数接口 tf.py_func在Faster R-CNN中的接口中的使用使用tf.py_func获得未知tensor维度在tf.py_func中对tensor的值作出判...转载 2019-08-06 11:18:08 · 202 阅读 · 0 评论 -
tensorflow代码中的tf.app.run()
一般 if __name__ == '__main__':之后紧接着的是主函数的运行入口,但在tensorflow的代码里头经常可以看到其后面的是tf.app.run(),这个究竟是什么意思呢???...........省略中间代码...........def main(argv=None): # pylint: disable=unused-argument start...原创 2019-07-31 14:54:42 · 768 阅读 · 2 评论 -
Tensorflow并行计算:多核(multicore),多线程(multi-thread),计算图分割(Graph Partition)
Github下载完整代码:https://github.com/rockingdingo/tensorflow-tutorial/tree/master/mnist简介利用tensorflow训练深度神经网络模型需要消耗很长时间,因为并行化计算就为提升运行速度提供了重要思路。Tensorflow提供了多种方法来使程序的并行运行,在使用这些方法时需要考虑的问题有:选取的计算设备是CPU还是...原创 2019-07-16 15:01:26 · 8874 阅读 · 2 评论 -
TensorFlow指定特定GPU以及占用显存的比例
因为LZ是使用GPU服务器跑TensorFlow,而TensorFlow默认的是占用所有GPU,于是为了不影响其他同学使用GPU,于是就试验和总结了一下TensorFlow指定GPU的方法。。环境系统:Ubuntu14.04TensorFlow:v1.3GPU 8个GTX1080,第一列的0~7的数是GPU的序号一.设置指定GPU1.一劳永逸的方法,直接在~/.bashrc中设置环...转载 2019-07-01 20:40:55 · 2282 阅读 · 0 评论 -
Tensorflow object detection API 搭建自己的目标检测模型并迁移到Android上
参考链接:https://blog.csdn.net/dy_guox/article/details/79111949之前参考上述一系列博客在Windows10下面成功运行了TensorFlow Android Demo,接下来就是尝试运用TensorFlow object detection API搭建自己的目标检测模型并迁移到Android上。一、创建训练测试集这里我从爬虫在百度...原创 2019-05-01 21:29:34 · 619 阅读 · 0 评论 -
在Windows10上运行TensorFlow Android Demo实例
最近一直想把自己训练的模型迁移到Android手机上,但入门的话肯定是要先学会把TensorFlow的Android Demo迁移到手机上,磕磕碰碰地,走了不少弯路,现在总结一下的。如有错误,请望指正。TensorFlow Lite详细教程:https://www.tensorflow.org/lite1、运行环境windows 10 、Android Studio 3.2.0Andr...原创 2019-03-28 17:36:50 · 1311 阅读 · 1 评论 -
Tensorflow学习—— 预创建的 Estimator
预创建的 Estimator本文档介绍了 TensorFlow 编程环境,并向您展示了如何在 TensorFlow 中解决鸢尾花分类问题。前提条件在使用本文档中的示例代码之前,您需要执行以下操作:安装 TensorFlow。 如果您是使用 virtualenv 或 Anaconda 安装的 TensorFlow,请激活您的 TensorFlow 环境。 通过执行以下命令来安...转载 2018-12-19 10:57:10 · 353 阅读 · 0 评论 -
Tensorflow学习—— Estimator简介
本文档介绍了 Estimator - 一种可极大地简化机器学习编程的高阶 TensorFlow API。Estimator 会封装下列操作:训练 评估 预测 导出以供使用您可以使用我们提供的预创建的 Estimator,也可以编写自定义 Estimator。所有 Estimator(无论是预创建的还是自定义)都是基于 tf.estimator.Estimator 类的类。注意...转载 2018-12-18 15:55:40 · 1107 阅读 · 0 评论 -
Tensorflow学习——Keras
Keras 是一个用于构建和训练深度学习模型的高阶 API。它可用于快速设计原型、高级研究和生产,具有以下三个主要优势:方便用户使用 Keras 具有针对常见用例做出优化的简单而一致的界面。它可针对用户错误提供切实可行的清晰反馈。 模块化和可组合 将可配置的构造块连接在一起就可以构建 Keras 模型,并且几乎不受限制。 易于扩展 可以编写自定义构造块以表达新的研究创意,并且可以创...转载 2018-12-17 17:31:58 · 2510 阅读 · 0 评论 -
Tensorflow学习——导入数据
导入数据目录1.基本机制数据集结构 创建迭代器 消耗迭代器中的值 保存迭代器状态2.读取输入数据消耗NumPy数组 消耗TFRecord数据 消耗文本数据3.使用Dataset.map()预处理数据解析tf.Example协议缓冲区消息 解码图片数据并调整其大小 使用tf.py_func()应用任意Python逻辑4.批处理数据集元素简单的批处理 使...转载 2018-09-06 22:45:47 · 3739 阅读 · 0 评论