拉格朗日插值的优缺点_拉格朗日插值法(图文详解)

本文详细介绍了拉格朗日插值法,包括其数学定义、范例、证明了存在性和唯一性。讨论了拉格朗日插值的优点(理论分析简便)和缺点(数值不稳定,易出现龙格现象),并提出了改进方法——重心拉格朗日插值法,强调了使用切比雪夫节点进行插值的数值稳定性优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对某个多项式函数,已知有给定的k + 1个取值点:

其中

对应着自变量的位置,而

对应着函数在这个位置的取值。

假设任意两个不同的xj都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:

其中每个

为拉格朗日基本多项式(或称插值基函数),其表达式为:

拉格朗日基本多项式

的特点是在

上取值为1,在其它的点

上取值为0。

范例

假设有某个二次多项式函数

,已知它在三个点上的取值为:

要求

的值。

首先写出每个拉格朗日基本多项式:

然后应用拉格朗日插值法,就可以得到

的表达式(

为函数

的插值函数):

此时代入数值

就可以求出所需之值:

证明

存在性

对于给定的k+1个点:

,拉格朗日插值法的思路是找到一个在一点

取值为1,而在其他点取值都是0的多项式

。这样,多项式

在点

取值为

,而在其他点取值都是0。而多项式

就可以满足

在其它点取值为0的多项式容易找到,例如:

它在点

取值为:

。由于已经假定

两两互不相同,因此上面的取值不等于0。于是,将多项式除以这个取值,就得到一个满足“在

取值为1,而在其他点取值都是0的多项式”:

这就是拉格朗日基本多项式。

唯一性

次数不超过k的拉格朗日多项式至多只有一个,因为对任意两个次数不超过k的拉格朗日多项式:

,它们的差

在所有k+1个点上取值都是0,因此必然是多项式

的倍数。因此,如果这个差

不等于0,次数就一定不小于k+1。但是

是两个次数不超过k的多项式之差,它的次数也不超过k。所以

,也就是说

。这样就证明了唯一性

几何性质

拉格朗日插值法中用到的拉格朗日基本多项式

(由某一组

确定)可以看做是由次数不超过n的多项式所组成的线性空间:

的一组基底。首先,如果存在一组系数:

使得,

那么,一方面多项式P是满足

的拉格朗日插值多项式,另一方面P是零多项式,所以取值永远是0。所以

这证明了

是线性无关的。同时它一共包含n+1个多项式,恰好等于

的维数。所以

构成了

的一组基底。

拉格朗日基本多项式作为基底的好处是所有的多项式都是齐次的(都是n次多项式)。

优点与缺点

拉格朗日插值法的公式结构整齐紧凑,在理论分析中十分方便,然而在计算中,当插值点增加或减少一个时,所对应的基本多项式就需要全部重新计算,于是整个公式都会变化,非常繁琐牛顿插值法来代替。此外,当插值点比较多的时候,拉格朗日插值多项式的次数可能会很高,因此具有数值不稳定的特点,也就是说尽管在已知的几个点取到给定的数值,但在附近却会和“实际上”的值之间有很大的偏差(如右下图)龙格现象,解决的办法是分段用较低次数的插值多项式。

重心拉格朗日插值法

重心拉格朗日插值法是拉格朗日插值法的一种改进。在拉格朗日插值法中,运用多项式

拉格朗日插值法的数值稳定性:如图,用于模拟一个十分平稳的函数时,插值多项式的取值可能会突然出现一个大的偏差(图中的14至15中间)

可以将拉格朗日基本多项式重新写为:

上面的表达式可以简化为:

于是拉格朗日插值多项式变为:

即所谓的重心拉格朗日插值公式(第一型)或改进拉格朗日插值公式。它的优点是当插值点的个数增加一个时,将每个

都除以

,就可以得到新的重心权

,计算复杂度为

,比重新计算每个基本多项式所需要的复杂度

降了一个量级。

将以上的拉格朗日插值多项式用来对函数

插值,可以得到:

因为

是一个多项式。

因此,将

除以

后可得到:

这个公式被称为重心拉格朗日插值公式(第二型)或真正的重心拉格朗日插值公式。它继承了(1)式容易计算的特点,并且在代入x值计算

的时候不必计算多项式

切比雪夫节点进行插值的话,可以很好地模拟给定的函数,使得插值点个数趋于无穷时,最大偏差趋于零切比雪夫节点进行插值可以达到极佳的数值稳定性。第一型拉格朗日插值是向后稳定的,而第二型拉格朗日插值是向前稳定的,并且勒贝格常数很小

参考来源

69: 59–67.

(英文)E. Meijering. A chronology of interpolation: From ancient astronomy to modern signal and image processing,. Proceedings of the IEEE: 323.

(英文)Julius Orion Smith III. Lagrange_Interpolation. Center for Computer Research in Music and Acoustics (CCRMA), Stanford University.

22 (5): 447–453.

The numerical stability of barycentric Lagrange Interpolation. IMA Journal of Numerical Analysis. 2004, 24 (4): 547–556.

(中文)李庆扬,王能超,易大义. 《数值分析》第4版. 清华大学出版社. 2001. ISBN 7-302-04561-5.

(中文)冯有前. 《数值分析》. 清华大学出版社. 2001. ISBN 7-810-82495-3.

(中文)拉格朗日插值多项式. 太原理工大学.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值