我们知道机器学习是通过数据训练算法实现人工智能的技术。深度学习是机器学习的子集,它也是最有趣、最深奥的一部分。
深度学习与其他算法相比,学习门槛要高的多。没有优秀的项目进行实战,学到的也只能只是皮毛而已。在这篇文章中,我列出了10个令人敬畏优秀开源深度学习项目,并附上了它们的链接,相信会对你有所帮助!
1、肺癌检测仪

如果你是研究 AI 医疗方向的学生或者从业者,这个深度学习项目值得研究一下。
我们知道肺癌一直是最复杂的疾病之一,要么癌症诊断得太晚,要么一点也不被识别。此外癌症结节有各种各样的外观,确诊需要很长时间才能确定。
为解决这个问题,12-Sigma 公司利用深度学习创建了 AI 算法,可帮助医生更有效地分析肺部的 CT 扫描。
Github 链接
https://github.com/ddhaval04/Lung-Cancer-Detection2、Detectron2

Detectron2 是 Facebook AI Research 的下一代软件系统,它实现了最先进的对象检测算法。它是对以前版本的检测龙的地面重写。
具有如下特点
- 它由 PyTorch 深度学习框架提供支持;
- 包括更多功能,如泛分段、密集、级联 R-CNN、旋转边界框、PointRend、DeepLab等;
- 可用作库,以支持其顶部的不同项目。我们将用这种方式开源更多的研究项目。它训练得更快;
- 模型可以导出为火炬脚本格式或 caffe2 格式进行部署;
Github 链接
https://github.com/facebookresearch/detectron23、面部交换

面部交换是一个深度学习项目,它可以帮助你复制别人的脸,并放在别人的脸。这项技术被广泛称为"深福克斯"。
使用深度学习深法视频可以模仿真实人脸的工作和特征。正如你可以看到如何酷和令人毛骨悚然,这就是面部交换项目的一个例子。
Github 链接
https://github.com/deepfakes/faceswap#deepfakesfaceswap4、Waveglow

Waveglow 是一个基于流的语音合成生成网络,由 Nvidia 提供支持。它提供快速,高效和有效的音频合成,而无需使用自动回归。它仅使用单个网络实现,仅使用单个成本函数进行训练。这是一个更稳定和简单的培训程序。
Github 链接
https://github.com/NVIDIA/waveglow5、神经增强

如果你想提高照片的分辨率,那该怎么办?深度学习来帮你,它可以训练神经网络以2倍甚至4倍放大图像。通过增加神经元数量或使用类似于低分辨率图像的数据集进行训练,来获得更好的结果。
Github 链接
https://github.com/alexjc/neural-enhance6、实时语音克隆

实时语音克隆是一个深度学习项目,只需要 5 秒的语音并克隆它。使用他们的声音进行语音训练将变的比较容易,这是一个非常酷的深度学习项目。
Github 链接
https://github.com/CorentinJ/Real-Time-Voice-Cloning7、Image-OutPainting

此项目可以预测图像边界外的视觉内容。这是斯坦福大学图像画报。上图显示了最终输出的要。
Github 链接
https://github.com/bendangnuksung/Image-OutPainting8、DeepMimic

DeepMimic 框架使用强化学习来训练,模仿人的各种运动技能,在动画行业大量使用。它以精确和令人信服地再现能力从人体主体的运动捕获数据中学到的动态和杂技物理手势。
Github 链接
https://github.com/xbpeng/DeepMimic9、fastText

FastText 是另一个 Facebook AI 研究软件。这是一个允许用户有效地学习单词表示和文本分类的库。
Github 链接
https://github.com/facebookresearch/fastText10、tulip

一直好奇地想知道你的植物和花会说什么,如果他们能说话?tulip 可以与喜爱的花卉或植物进行模拟对话。
Github 链接
https://github.com/GoogleCloudPlatform/tulip好了,如果读者们有什么更好的开源项目与地址,可以写在评论区哦!
See you
本文介绍了十个令人瞩目的开源深度学习项目,涵盖医疗影像分析、目标检测、语音合成等多个领域,提供了丰富的实践资源。
1063

被折叠的 条评论
为什么被折叠?



