行程问题是二元一次方程组中比较重要的一类问题,相遇问题、追及问题、环形跑道问题、顺流逆流问题、顺风逆风问题、火车过桥问题等等,这些问题你都会吗?

行程问题
例题1:某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车;若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km,求两车速度。
分析:利用甲车先出发1h后乙车出发,则乙车出发后5h追上甲车和甲车先开出20km后乙车出发,乙车出发4h后追上甲车,结合两车行驶的路程相等得出等式求出即可.


相遇追及问题
例题2:一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟;若两车相向而行,快车从与慢车相遇时到离开慢车,只需18秒钟,问快车和慢车的速度各是多少?
分析:由于两车两车相向而行,从相遇到离开所行的距离为两车的长度和230+220=450米,用时90秒,则速度和×相遇时间=总路程;如果同向而行,从快车追用慢车到离开的追及距离同为两车的长度为450米,用时18秒,则速度差×相遇时间=总路程.


环形跑道问题
例题3:甲、乙两人在周长为400m的环形跑道上练跑,如果相向出发,每隔2.5min相遇一次;如果同向出发,每隔10min相遇一次,假定两人速度不变,且甲快乙慢,求甲、乙两人的速度.
分析:相向而行是相遇问题,要用到:甲路程+乙路程=两人相距路程;同向而行是追及问题,要用到:乙路程-甲路程=两人相距路程.

火车过桥问题
例题4:某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.
分析:根据题中的火车完全通过桥,实际告诉我们火车所行路程为桥长+火车长;整列火车在桥上实际告诉我们火车所行路程为桥长-火车长,找到等量关系式:①火车行驶速度×时间1分钟=桥长+火车长;②火车行驶速度×40秒=桥长-火车长.

顺流逆流问题
船在顺水中的速度=船在静水中的速度+水流的速度
船在逆水中的速度=船在静水中的速度-水流的速度
例题5:已知A、B两码头之间的距离为240km,一艏船航行于A、B两码头之间,顺流航行需4小时 ;逆流航行时需6小时, 求船在静水中的速度及水流的速度.
分析:设船在静水中的速度为x千米/时,水流的速度为y千米/时,则顺水速度为(x+y)千米/时,逆水速度为(x-y)千米/时,根据往返路程相等建立等量关系求出其解就可以求出结论.

这几类问题,你会了吗?