每隔10秒执行一次_二元一次方程组行程问题,相遇追及、环形跑道、顺流逆流,你会吗...

本文探讨了行程问题中的相遇追及、环形跑道、火车过桥和顺流逆流问题,通过实例解析如何运用二元一次方程组进行解答。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

行程问题是二元一次方程组中比较重要的一类问题,相遇问题、追及问题、环形跑道问题、顺流逆流问题、顺风逆风问题、火车过桥问题等等,这些问题你都会吗?

ecf9db48d68dd4259f9d8cd88b7091f9.png

行程问题

例题1:某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车;若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km,求两车速度。

分析:利用甲车先出发1h后乙车出发,则乙车出发后5h追上甲车和甲车先开出20km后乙车出发,乙车出发4h后追上甲车,结合两车行驶的路程相等得出等式求出即可.

b43e8ae44ceb86866c4435746f0d730d.png
98405de7fd517a9f7f27ef33f8ab3f32.png

相遇追及问题

例题2:一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟;若两车相向而行,快车从与慢车相遇时到离开慢车,只需18秒钟,问快车和慢车的速度各是多少?

分析:由于两车两车相向而行,从相遇到离开所行的距离为两车的长度和230+220=450米,用时90秒,则速度和×相遇时间=总路程;如果同向而行,从快车追用慢车到离开的追及距离同为两车的长度为450米,用时18秒,则速度差×相遇时间=总路程.

6ac6be7ff618a891946489a9b14408bf.png
821a227deca2a30b7640149c3a5b68f0.png

环形跑道问题

例题3:甲、乙两人在周长为400m的环形跑道上练跑,如果相向出发,每隔2.5min相遇一次;如果同向出发,每隔10min相遇一次,假定两人速度不变,且甲快乙慢,求甲、乙两人的速度.

分析:相向而行是相遇问题,要用到:甲路程+乙路程=两人相距路程;同向而行是追及问题,要用到:乙路程-甲路程=两人相距路程.

bb69c373e0f09f2d70e71bdc8ac80b45.png

火车过桥问题

例题4:某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.

分析:根据题中的火车完全通过桥,实际告诉我们火车所行路程为桥长+火车长;整列火车在桥上实际告诉我们火车所行路程为桥长-火车长,找到等量关系式:①火车行驶速度×时间1分钟=桥长+火车长;②火车行驶速度×40秒=桥长-火车长.

a0cd09593e9d17e7e004d8e1b9ae8507.png

顺流逆流问题

船在顺水中的速度=船在静水中的速度+水流的速度

船在逆水中的速度=船在静水中的速度-水流的速度

例题5:已知A、B两码头之间的距离为240km,一艏船航行于A、B两码头之间,顺流航行需4小时 ;逆流航行时需6小时, 求船在静水中的速度及水流的速度.

分析:设船在静水中的速度为x千米/时,水流的速度为y千米/时,则顺水速度为(x+y)千米/时,逆水速度为(x-y)千米/时,根据往返路程相等建立等量关系求出其解就可以求出结论.

448db640ff054d6306fcda43ace40746.png

这几类问题,你会了吗?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值