临近期末复习阶段,数学老师布置了一份练习卷,满满的几十道纯文字小题,包括了20以内数字比较常见的题型 。


单是扫上一眼就觉得眼快晕了,距离上次考试说到的超纲难问题才没多久,做题的难度刷的就上来了,这进度是坐了火箭的吗?(详情可见:
每日一练 27 一年级数学考试超纲题到底难在哪?mp.weixin.qq.com
吐槽归吐槽,该做的作业还是要做,赶在孩子做题前先大致看了一遍题目。难度全部在于各种知识点的混搭,简单来说就是,看着数字比大小都会做,用文字讲出来起来就能把人考晕倒。
比较数字大小的难度在哪?
题目分类上看,主要提到的是:
基本的数位关系——
1个十和7个一是( );
2个一和1个十是( );
5个一和1个一是( );
个位上是3,十位上是1的数是( )
数位关系看上去很基础,好像会数数就能搞定。不外乎就是10进制的内容,凑够十个加一位。
通用的十进制的数字系统:满10就要进位:个位满10就有了十位,十位满10就有了百位。
依此类推,按照从小到大、从右到左的顺序,我们把各数位依次称为:个位、十位、百位、千位、万位……
但让一年级的孩子刚刚从10以内计算的初期,跳进10以上的数字变化。对数字的抽象思维还不能和实际运用挂钩,一口气能理清楚这类问题是不现实的。
解决之道还是最基础的数数能力,搞清楚数字拆分的问题。小学数学的教具是用数棒,一捆是十个,代表十位数,余下凑不成十个的就是个位数。

数位的理解其实从最初的分与合也有关系,5分解成3和2,1和4,0和5。
两位数也是一样,基础的单位是数量10再向上叠加的变化。孩子看到给出的数字15,想到的应该是10和5的组合。渐渐的再理解里面的10是两位数,5是个位数。
个人更喜欢用积木块,更容易看出数字组合的变化,十个凑成一组就是一个集合。
剩下还没有到10的是另一个数量,当两个数量合并之后,组成现在的两位数。

1个十,表示10也是十位数,6个一是6,表示6是个位数。看似很简单,看到十位数就在左边写个1,个位数就在右边写个6。
如果用这样的套路去解题当然很容易,可是怎么保证孩子真正去理解了到了数位的关系呢?
比如,像这样的问题,虽然是同一个数字却可以用不同的表达方式:
1个十和6个一是( );
1个十和6个一合起来是( )
16从右面起,第一位是( )位,
第二位是( )。
一个十往后数6个,是数字()?
只有先理解数量变化的知识,才能赶得上后面的文字版数学题的升级考验。
如果孩子已经学会了,不如多问一句,十位数是指10以上的数字吗?
10这个数字左边的1是表示十个一吗?0是个位数吗,还是表示个人位数上没有其他数字?
数字11左面是1右面也是1有什么不一样吗?
如果这些问题孩子都能去给出去解答,那证明之间的关系已经是理解的了,不然还是要把这些思路理清楚再来做题。

分清数字大小背后的关系
数学启蒙初期用图解的形象模式,其实是在用贴近孩子思维的理解方式体现。
把不同现实物品(或图片)对应相对的虚拟数字。后期升级到需要列数字,就开始运用数字表征的概念,把图像转化成数字,配合运算等式来体现数量变化。
早期数学启蒙提倡培养数感,多去数数的目的是靠接触不同的数量让孩子体会到真实的物体和数字的关系。
小学现阶段就开始进入用文字来体现数字这样更加进阶的数字关系。
数学的专用名词解释:
2与2的和是( ),18与10的差是( )。
最大的一位数是( ),最小的一位数是( )。
类似的表达方式,考查的是数学里的名词解释,两数相加结果叫和,相减的结果是差。
两位数和一位数也是数字不同单位的叫法,平时解题就最好学会用标准的数学词汇运用出来,才能掌握文字中题目的内容。
类似的还出现了关于数字大小的关系在递增和递减的变化规律:
数字的前与后表示大还是小?
比13多4的数是( );
比16多2的数是( );
15比4多( ),13比6多( ),
14 比4多( ),32比2多( )。
10比20少( ),5比15少( ),
数字比大小是最初数学符号计算的基础,建立在孩子已经对数字大小变化熟练掌握的时候。
初期要如何知道比较数字大与小?
靠实物(图)对比排列,一个有5个一个有8个,多出来的3个就是排列的结果。

比一比,一边6个一边8个,少了2个。
慢慢的进阶到看到更大的数字往前数(倒数)就是变小,往后数字就变大。

比3多4的数是( )?——类似这样的题目看上去是和3+4=()?是同一个意思,但在孩子的理解范围内,还是要先处理好数字总量的变化模式,在脑中模拟出数轴上数字变化的规律。
比3多4,意味着3往后数4,4.5.6.7。
比10少2,10向后数2,9.8。
直到更大的数字时候再升级到运算等式。
题目还会用不同的文字变化来体现数字间的关系:
5比4多( ),13比6多( ),
10比20少( ),5比15少( ),
多和少的意义是体现在出现的两个数字之间的关系上。
理清楚两个数字谁大谁小,再试着用不同的表达把数量表达出来,5比4多1等同于4比5少1。
4比10少6,等同于10比4多6。
数学问题遇到语言文字组合,考察的不光是数字概念,还有数字背后逻辑表达推理能力。
数学的“阅读”重在读懂数字之间的关系,举一反三的考题,最能考察学生对同类概念掌握程度的情况。
很多时候孩子在文字题上犯错,其实是不能理解文字中的信息,看不懂数学关系造成的。
当孩子无法用数学式的方式思考问题时 就会被文字中的问题所迷惑,不能分析出题目中的数量关系,产生数字运算错误,搞错顺序,弄不懂题意等等问题。
遇上难题正是检视孩子现在数学水平的最好机会,靠一种题型就能运用到不同的概念,难道不是数学思维打开的正确方式吗?
更多关于小学数学的零零碎碎-------
提前学就能考100分吗,现实其实是这样的.....家长该从错题中发现什么?mp.weixin.qq.com




谢谢收看,喜欢的话也可以来我的个人公众号:安家妈妈的小小学堂 来找我!有更多关于小一生学习经验的分享。