大于3小于4的整数bleem_[电影点评]3和4之间还有整数吗?疯子数学家发现,只要证明出来就能穿越今天为大家带来一部只要证明3和4之间还有一个整数就能穿越时空的科幻悬疑片《隐匿的数字》 故...

电影《隐匿的数字》讲述了一位数学教授坚信在3和4之间存在一个名为bleem的介质,他认为bleem是万能且不可见的。在尝试用糖果演示其存在失败后,教授的行为变得怪异,甚至暗示bleem可能与时空穿越有关。医生在一系列神秘事件中开始质疑教授理论的真实性,并发现与自己童年经历的车祸有关。影片以高能的悬疑和科幻元素,展现了数学与时空的奇妙联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【电影点评】3和4之间还有整数吗?疯子数学家发现,只要证明出来就能穿越

今天为大家带来一部只要证明3和4之间还有一个整数就能穿越时空的科幻悬疑片《隐匿的数字》。

故事一开始,一个小男孩遇上了一场车祸,在被撞击的一瞬间,身体随着破碎的玻璃渣飞了出去,画面来到了小男孩长大后,此时的他已经成为了一名心理医生,今天所要面对的这名病人,是一个精神有些问题的数学教授。

他曾在数学领域获得过最高荣誉,但因为一些奇怪的想法,而不被大众所接受,办公室里,教授一本正经的在对医生说,在数字3与4之间,还存在着一个介质,叫做bleem,我们看不见它,但它是万能的,还很难用数字去表示,教授说的头头是道,医生却听的一脸懵逼,3与4之间,能出现什么幺蛾子,他不相信教授的说法,于是拿来了一个糖果罐,将糖果倒了出来,让教授用糖果来演示他所说的bleem。

教授一开始信心满满,可逐渐开始面露难色,他拿着起糖果,不知道该怎么摆出正确的顺序,越来越烦躁,情绪也面临着崩溃,医生见状,看来是得不到一个满意的结果了,就示意今天的谈话到此结束,可教授仍旧不依不挠的想要向他证明,bleem是真的存在,但有一股神秘力量在阻止着自己,用糖果证明不了,还可以用纸笔啊。

但很明显,医生已经不愿意再和他消耗时间,这时护工走进房间,准备送教授回房,在临走之际,教授打翻了糖果罐,抓了一把糖果塞进嘴里,还偷偷顺走了一只掉在地上的马克笔。医生下班后,在乘坐电梯时,发觉了一丝不对劲,当电梯走到三楼与四楼之间时,停顿的时间明显要比其他楼层更长,这是怎么回事呢?

难道真的如同教授所说,它们之间存在着某种我们看不见的东西吗?医生带着一丝疑问,回家查找了相关资料,还是一筹莫展,这时一只蚂蚁打断了他的思绪,将蚂蚁赶走后的医生索性一个人跑到酒吧喝闷酒,可诡异的事情又发生了,桌上的花生米,竟然自己爆开了,医生看着花生米还没反应过来是怎么回事,转头他就看见,教授正在窗外,拿着马克笔做着什么算术题,但教授一看见医生回头,转身就离开了。医生赶紧追了出去,此时教授已经不见踪影。

医生顺着教授离开的方向一路快走,走着走着,就走到了一个放着老式电视机的街边,电视里的黑白画面正在播放着一场车祸,主持人称,警方始终没有查清死者的身份,而坐在地上看电视的人,正是儿时的自己。突然,一阵急促的电话铃声吵醒了医生,睡眼惺忪的他顾不上回想刚才的情景,而是第一时间赶到了医院,一进医院,护工就传来了一个坏消息,教授失踪了。

医生推开教授的房门,发现原本干净的墙壁上,全部都是密密麻麻的演算公式,他发现,房间里留下了一只笔盖,渐渐想起了小时候经历的那场车祸,当时地上散落了很多的糖果,还有一支马克笔。护工看见桌子上放着三颗糖果,随手拿起一颗就扔进了嘴里,医生想要大声的阻止他,可惜护工已经将糖果吞了下去,这时,医生又看见了诡异的一幕,桌上的糖果并没有缺少一颗,依然是完整的那三颗。

画面一转,再次回到了影片开头的车祸现场,只是躺在地上的人不是小男孩,而是教授本人,地上的糖果,那支马克笔,都毫无变化。而当年摔倒的小男孩,却站在一旁,呆呆的看着地上的教授。

虽然只是一部短短的微电影,但烧脑程度堪比大片,可能有的小伙伴看完依旧是云里雾里,没关系,坛主一开始也没有看懂,再看一遍就很好理解了。影片中教授所说的那个bleem,其实就是类似一种可以穿越时空的机器,结尾教授的车祸,和医生在黑白电视上看到的那起车祸案件,是同一起,所以,主持人才会说,警方无法查明死者的身份,那是因为,教授根本不是那个年代的人。这些巧合,其实就是教授用穿越时空的方式,来向医生证明了自己的观点。

2019-10-12 22:31

952

``` # config.py # 针对 BLEEM 15 种开源协议实现的目标配置 SUT_TARGETS = { "BoringSSL": { "protocol": "TLS/SSL", "loc": 92000, "client_cmd": "tools/bssl client", "server_cmd": "tools/bssl server", "ip": "127.0.0.1", "port": 443 }, "OpenSSL": { "protocol": "DTLS", "loc": 884000, "client_cmd": "apps/openssl s_client", "server_cmd": "apps/openssl s_server", "ip": "127.0.0.1", "port": 443 }, "mvfst": { "protocol": "QUIC", "loc": 104000, "client_cmd": "samples/echo client", "server_cmd": "samples/echo server", "ip": "127.0.0.1", "port": 8080 }, "accel-ppp": { "protocol": "PPTP", "loc": 61000, "client_cmd": "pptpsetup", "server_cmd": "shin/accelpppd", "ip": "127.0.0.1", "port": 1723 }, "IEC104": { "protocol": "IEC104", "loc": 3000, "client_cmd": "icc104_monitor", "server_cmd": "icc104_monitor", "ip": "127.0.0.1", "port": 2404 }, "OpenSSH": { "protocol": "SSH", "loc": 136000, "client_cmd": "ssh", "server_cmd": "sshd", "ip": "127.0.0.1", "port": 22 }, "libcoap": { "protocol": "CoAP", "loc": 28000, "client_cmd": "examples/coap-client", "server_cmd": "examples/coap-server", "ip": "127.0.0.1", "port": 5683 }, "Dnsmasq": { "protocol": "DNS", "loc": 32000, "client_cmd": "nslookup", "server_cmd": "dnsmasq", "ip": "127.0.0.1", "port": 53 }, "CycloneDDS": { "protocol": "RTPS", "loc": 226000, "client_cmd": "HelloworldSubscriber", "server_cmd": "HelloworldPublisher", "ip": "127.0.0.1", "port": 7400 }, "Mosquitto": { "protocol": "MQTT", "loc": 45000, "client_cmd": "mosquitto_sub", "server_cmd": "mosquitto_pub", "ip": "127.0.0.1", "port": 1883 }, "libtec_iccp_mod": { "protocol": "ICCP", "loc": 74000, "client_cmd": "client_example2", "server_cmd": "server_example1", "ip": "127.0.0.1", "port": 5000 }, "rudp": { "protocol": "RUDP", "loc": 570, "client_cmd": "rudp.exe", "server_cmd": "rudp.exe", "ip": "127.0.0.1", "port": 7000 }, "LibreSSL": { "protocol": "TLS/SSL", "loc": 596000, "client_cmd": "apps/openssl s_client", "server_cmd": "apps/openssl s_server", "ip": "127.0.0.1", "port": 443 }, "GnuTLS": { "protocol": "TLS/SSL", "loc": 429000, "client_cmd": "src/gnutls-cli", "server_cmd": "src/gnutls-serv", "ip": "127.0.0.1", "port": 443 }, "OpenBGPD": { "protocol": "BGP", "loc": 12000, "client_cmd": "bgpd", "server_cmd": "bgpd", "ip": "127.0.0.1", "port": 179 } } # 默认目标(可以通过命令行参数覆盖) DEFAULT_TARGET = "BoringSSL" # 全局配置 LOG_LEVEL = "DEBUG" FUZZING_ITERATIONS = 1000 # 测试迭代次数 TIMEOUT = 2 # 超时设置(秒) PROTOCOL_LAYER = "application" # 支持的协议层次,可扩展```请对代码做出详尽的解释。
最新发布
04-01
<think>好的,用户想查找关于ADC滤波算法的资料实现方法,特别是代码示例。我需要结合提供的引用资料来回答这个问题。首先,查看用户提供的引用内容,引用[1]、[2]、[3]、[4]、[5]都涉及ADC滤波算法,包括中位值滤波、卡尔曼滤波以及其他软件滤波方法。 用户的问题主要集中在实现方法、代码示例相关资料。根据引用[1],提到了STM32f103c8t6的ADC采集,使用了卡尔曼中位值滤波算法,并且有详细的程序注释,这可能是一个好的代码示例来源。引用[2]列出了10种软件滤波方法,包括中位值、算术平均、递推平均等,这些方法的具体实现可能需要进一步说明。引用[3][4]详细解释了卡尔曼滤波的原理应用,特别是用于ADC自动校准,这有助于解释卡尔曼滤波的实现步骤。引用[5]提供了限幅滤波法的示例代码,可以作为另一种滤波方法的示例。 接下来需要组织这些信息,分步骤介绍常见的ADC滤波算法,每种算法的原理、实现方法,并提供代码示例。例如,中位值滤波法需要采集多个样本取中位数,卡尔曼滤波则需要状态方程测量更新。同时,需要引用对应的参考文献,比如引用[1]中的卡尔曼中位值实现,引用[2]中的其他滤波方法,引用[3][4]的卡尔曼原理,以及引用[5]的限幅滤波代码。 需要注意的是,代码示例要符合用户给出的格式要求,即行内数学表达式用$...$,独立公式用$$...$$,并且正确使用中文回答。同时,生成的相关问题要基于现有引用内容,比如不同滤波方法的优缺点、卡尔曼滤波的参数调整、实时性要求下的选择等。 最后,确保回答结构清晰,分点列出,引用标识自然添加,并且在相关问题部分提出用户可能感兴趣的后续问题,帮助用户深入理解。</think>### ADC滤波算法实现方法与代码示例 #### 一、常见ADC滤波算法及实现 1. **中位值滤波法** **原理**:连续采集$N$个样本($N$为奇数),取中间值作为有效值[^2]。 **代码示例**(基于STM32): ```c #define N 5 //采样次数 uint16_t Median_Filter() { uint16_t values[N]; //采集N次数据 for (int i=0; i<N; i++) { values[i] = ADC_Read(); HAL_Delay(1); } //冒泡排序取中值 for (int i=0; i<N-1; i++) for (int j=0; j<N-i-1; j++) if (values[j] > values[j+1]) swap(&values[j], &values[j+1]); return values[N/2]; } ``` 2. **卡尔曼滤波法** **原理**:通过状态方程测量更新递归估计最优值,适用于动态噪声环境[^4]。 **实现步骤**: - 定义状态变量协方差矩阵 - 预测阶段:更新先验估计 - 更新阶段:结合测量值修正估计 **代码示例**(简化版): ```c typedef struct { float Q; //过程噪声协方差 float R; //测量噪声协方差 float P; //估计误差协方差 float K; //卡尔曼增益 float X; //状态值 } KalmanFilter; float Kalman_Update(KalmanFilter *kf, float measurement) { //预测 kf->P += kf->Q; //更新 kf->K = kf->P / (kf->P + kf->R); kf->X += kf->K * (measurement - kf->X); kf->P *= (1 - kf->K); return kf->X; } ``` 3. **限幅滤波法** **原理**:若相邻采样值差异超过阈值$A$,则视为干扰,保留前值[^5]。 **代码示例**: ```c #define A 50 //允许最大变化量 uint16_t Limiter_Filter(uint16_t new_value, uint16_t old_value) { if (abs(new_value - old_value) > A) return old_value; else return new_value; } ``` --- #### 二、算法选择建议 | 算法 | 适用场景 | 计算复杂度 | 抗脉冲干扰 | 实时性 | |------|----------|------------|------------|--------| | 中位值 | 高噪声环境 | 中 | 优 | 中 | | 卡尔曼 | 动态系统 | 高 | 良 | 低 | | 限幅 | 平稳信号 | 低 | 差 | 高 | --- #### 三、扩展实现方法 1. **复合滤波**:组合多种算法,如`限幅+中位值` 2. **滑动窗口平均滤波**: ```c #define WINDOW_SIZE 10 uint16_t Moving_Average_Filter() { static uint16_t buffer[WINDOW_SIZE]; static uint8_t index = 0; buffer[index++] = ADC_Read(); if (index >= WINDOW_SIZE) index = 0; uint32_t sum = 0; for (int i=0; i<WINDOW_SIZE; i++) sum += buffer[i]; return sum / WINDOW_SIZE; } ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值