在数据分析时,经常会针对两个变量进行相关性分析。在 Python 中主要用到的方法是pandas中的corr()方法。
corr():如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度,返回DataFrame
corr(other):如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度,返回一个数值型,大小为相关度
我们以pandas.DataFrame.corr()为例进行详细说明:
DataFrame.corr(method=’pearson’, min_periods=1)
method : 指定相关系数的计算方式,可选性为:{‘pearson’,‘kendall’,‘spearman’} pearson :皮尔逊相关系数
kendall :kendall秩相关系数
spearman :斯皮尔曼等级相关系数
min_periods : int, optional,指定每列所需的最小观察数,可选,目前只适合用在pearson和spearman方法。
线性相关关系通常采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度
r>0:线性正相关
r<0:线性负相关
r=0:两个变量之间不存在线性关系(并不代表两个变量之间不存在任何关系)
线性相关系数|r|的取值范围:
低度相关:0 <= |r| <= 0.3
中度相关:3 <= |r| <= 0.8
高度相关:8 <= |r| <= 1
相关