python分析数据的相关性_使用Python进行相关性分析

在数据分析中,Python的pandas库提供了corr()方法用于计算变量间相关性。本文以DataFrame.corr()为例,介绍皮尔逊、肯德尔和斯皮尔曼三种相关系数,并通过实例展示如何计算和可视化相关矩阵。当线性相关系数的绝对值大于0.3时,我们认为变量间存在中度至高度的相关性。
摘要由CSDN通过智能技术生成

在数据分析时,经常会针对两个变量进行相关性分析。在 Python 中主要用到的方法是pandas中的corr()方法。

corr():如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度,返回DataFrame

corr(other):如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度,返回一个数值型,大小为相关度

我们以pandas.DataFrame.corr()为例进行详细说明:

DataFrame.corr(method=’pearson’, min_periods=1)

method : 指定相关系数的计算方式,可选性为:{‘pearson’,‘kendall’,‘spearman’} pearson :皮尔逊相关系数

kendall :kendall秩相关系数

spearman :斯皮尔曼等级相关系数

min_periods : int, optional,指定每列所需的最小观察数,可选,目前只适合用在pearson和spearman方法。

线性相关关系通常采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度

r>0:线性正相关

r<0:线性负相关

r=0:两个变量之间不存在线性关系(并不代表两个变量之间不存在任何关系)

线性相关系数|r|的取值范围:

低度相关:0 <= |r| <= 0.3

中度相关:3 <= |r| <= 0.8

高度相关:8 <= |r| <= 1

相关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值