- 博客(77)
- 资源 (3)
- 收藏
- 关注
原创 量化交易策略回测及风险指标分析
量化交易策略的回测和风险指标分析是投资者在金融市场中获取成功的重要工具。通过科学的回测流程和准确的风险评估,投资者能够更有效地制定投资策略,降低风险并实现预期收益。未来,随着技术的不断进步,量化交易将在更广泛的领域中展现出其潜力。关于文章有何疑问,欢迎到评论区留言,共同讨论聚宽量化交易与基础投资工具介绍Pandas与JQData在量化投资中的应用:数据获取与处理函数详解量化选股:原理与实战指南(一)量化选股:原理与实战指南(二)量化择时技术指标详解及实战应用(一)
2024-10-31 17:36:35 55
原创 人工神经网络在量化交易中的应用
人工神经网络在量化交易中的应用展现了其强大的学习能力和适应性。通过优化网络结构、调整超参数,ANN能够在复杂的金融环境中提供更精确的预测。未来,结合深度学习技术,ANN在量化交易的应用将更加广泛,助力投资者实现更高效的决策。在量化交易领域,掌握人工神经网络的基本原理和应用方法,将为开发者提供更强大的工具和视野。关于文章有何疑问,欢迎到评论区留言,共同讨论聚宽量化交易与基础投资工具介绍Pandas与JQData在量化投资中的应用:数据获取与处理函数详解量化选股:原理与实战指南(一)
2024-10-23 17:47:30 51
原创 中国家庭收入调查数据1998-2018
随着调查方法的不断完善和数据的持续更新,这些信息将有助于更全面地评估家庭经济状况、制定针对性的政策,并推动社会公平和可持续发展。参与调查的家庭被要求提供详细的收入信息,调查内容涵盖家庭成员的职业、教育程度、居住状况以及消费支出等多个方面。CHIP数据合计包含多个年份,包含1988、1995、1999、2002、2007、2008、2013、2018年,为研究中国收入分配动态情况提供丰富的数据支持。随着经济的快速发展,家庭收入水平的变化直接反映了居民的生活质量和社会的整体繁荣程度。
2024-10-22 14:18:03 257
原创 财务与技术指标双剑合璧:智能股票筛选与交易策略揭秘
该代码从财务数据筛选股票开始,结合技术分析工具,最终通过简单的策略进行交易决策并计算收益。尽管整体流程清晰,但仍有一些优化空间:将筛选标准参数化、改进交易策略、引入更多的技术指标,并增加风险管理机制如止损止盈,以提高策略的灵活性与实际应用效果。通过持续优化,投资者能够更好地把握市场机会,提升收益。关于文章有何疑问,欢迎到评论区留言,共同讨论聚宽量化交易与基础投资工具介绍Pandas与JQData在量化投资中的应用:数据获取与处理函数详解量化选股:原理与实战指南(一)量化选股:原理与实战指南(二)
2024-10-16 15:42:59 61
原创 量化择时技术指标详解及实战应用(二)
本文详细介绍了量化择时中常用的技术指标,包括KD、RSI、BOLL、MACD等,并展示了如何在实际交易中使用这些指标。不同的技术指标有各自的优缺点,适用于不同的市场环境。投资者应根据自身的交易策略、市场环境及其他技术指标,综合分析后作出合理的交易决策。关于文章有何疑问,欢迎到评论区留言,共同讨论聚宽量化交易与基础投资工具介绍Pandas与JQData在量化投资中的应用:数据获取与处理函数详解量化选股:原理与实战指南(一)量化选股:原理与实战指南(二)量化择时技术指标详解及实战应用(一)
2024-10-14 14:32:02 245
原创 量化择时技术指标详解及实战应用(一)
本文详细介绍了几种常见的量化择时技术指标,包括涨跌幅、SMA、EMA和MACD,并通过Python代码展示了如何计算这些指标及其在实战中的应用。量化择时是复杂的技术分析工具,可以为投资者提供更加客观的交易参考。在实际操作中,投资者可以根据不同市场的特性,调整指标参数,优化交易策略。关于文章有何疑问,欢迎到评论区留言,共同讨论码字艰辛,本篇内容就分享至此,如果渴望深入了解更多Python在量化交易的应用,别忘了点击关注博主,引导你从零开始探索Python在统计分析上的奥秘。同时,对于在。
2024-10-14 11:59:37 629
原创 量化选股:原理与实战指南(二)
在量化选股中,价值类因子是评估股票投资价值的核心指标。这些因子基于公司的财务数据,反映股票价格与公司财务表现之间的关系。市净率(P/B Ratio):反映股票价格相对公司每股净资产的比率。市销率(P/S Ratio):反映股票价格相对公司每股销售额的比率。市盈率(P/E Ratio):反映股票价格相对公司每股收益的比率。市现率(P/CF Ratio):反映股票价格相对每股现金流的比率。通过这些因子,投资者可以评估股票的市场估值,并通过筛选具有较低估值的股票,寻找潜在的投资机会。
2024-10-13 14:43:34 950
原创 量化选股:原理与实战指南(一)
量化选股的关键在于合理选择适合的因子组合,不同因子能够反映公司不同方面的表现。例如,在投资成长型股票时,成长类因子如营业收入增长率和净利润增长率就显得尤为重要。而对于稳健型投资者,可能会更关注公司的规模和盈利能力,因此规模类因子和质量类因子也需要重点考量。
2024-10-13 11:01:43 848
原创 Pandas与JQData在量化投资中的应用:数据获取与处理函数详解
Pandas的resample方法提供了对时间序列数据进行重采样的功能,能够对数据进行降频或升频处理。常用于时间序列数据的周期转换和汇总统计。JQData是一款专业的量化数据服务工具,提供全面的市场数据、财务数据、板块数据等。通过API,我们可以高效地获取各种基础数据,以支持投资策略开发。以下是JQData中几个核心函数的介绍与应用示例。
2024-10-12 15:58:55 586
原创 量化交易与基础投资工具介绍
量化交易是现代金融市场中广泛应用的一种交易方式,指投资者通过计算机技术、金融工程建模等方法,基于历史数据和数学模型设计交易策略,并利用算法自动化执行交易。这种交易方式可以避免情绪化决策,依托模型和数据的判断,更加精准高效地执行投资策略。量化交易通过先进的技术手段提高了投资效率,并减少了人为情绪对投资决策的干扰。同时,K线图、复权等技术工具为投资者提供了重要的市场分析手段。通过了解这些概念,投资者可以更好地制定策略,进行理性投资。
2024-10-10 16:50:40 787
原创 独立样本t检验及其案例分析
两组数据是独立的。数据呈正态分布。方差齐性(可选择假定或不假定)。三、案例分析:医学与非医学学生的捐献意愿独立样本t检验是研究两组间均值差异的重要工具。通过具体案例的分析,我们可以更深入地理解数据背后的故事,并为实际问题提供数据支持和决策依据。码字艰辛,本篇内容就分享至此,如果渴望深入了解更多SPSS学习方面的应用,别忘了点击关注博主,引导你从零开始探索Python在统计分析上的奥秘。同时,对于在数据分析与SPSSSPSS,让我们一起努力坚强学习,共同进步吧~。
2024-09-30 14:38:44 958
原创 神经网络在多分类问题中的应用
神经网络在分类任务中的应用越来越广泛,尤其是在图像识别、自然语言处理等领域。本文将介绍如何使用PyTorch构建一个简单的神经网络来处理多分类问题。我们将通过一个实战案例,展示数据构造、模型训练、模型保存与加载、以及评估结果的整个过程。
2024-09-29 11:17:21 964
原创 卡方检验及其在Python中的应用
卡方检验是分析分类变量之间关系的重要工具,能够有效地检验观察数据与期望数据之间的差异。在Python中,库为我们提供了便捷的工具来进行卡方检验和相关分析。希望通过本文的介绍,小伙伴们能对卡方检验有更深入的理解,并能够在实际数据分析中熟练应用。码字艰辛,本篇内容就分享至此,如果渴望深入了解更多Python机器学习方面的应用,别忘了点击关注博主,引导你从零开始探索Python在统计分析上的奥秘。同时,对于在数据分析与机器学习《Python之机器学习》,让我们一起努力坚强学习,共同进步吧~
2024-09-27 11:59:11 859 1
原创 神经网络介绍及其在Python中的应用(一)
LR类继承自nn.Module,其中self.linear定义了一个线性层,输入和输出特征均为1。神经网络通过层叠多个非线性变换,能够学习到复杂的模式和特征。在实际应用中,通过选择合适的架构、激活函数和优化算法,可以实现高效的模型训练和预测。随着深度学习技术的不断发展,神经网络将在更广泛的领域发挥作用。码字艰辛,本篇内容就分享至此,如果渴望深入了解更多Python机器学习方面的应用,别忘了点击关注博主,引导你从零开始探索Python在统计分析上的奥秘。《Python之机器学习》
2024-09-26 14:05:47 938
原创 使用Python解决数据分析中的相关性分析
本文介绍了如何在Python中计算相关系数及相似度,可用于数据预处理分析部分。通过实际的代码示例,展示了皮尔逊相关系数、欧式距离和余弦相似度的计算方式。这些技术在数据分析和推荐系统中具有重要应用。
2024-09-25 11:48:42 655
原创 使用python计算各变量相关性并绘制热力图
在多元线性回归中,了解特征变量之间的相关性非常重要。通过计算特征之间的相关性,我们可以分析哪些特征与目标变量具有较强的线性关系,以及特征之间是否存在多重共线性问题。我们使用 皮尔逊相关系数(Pearson Correlation Coefficient)来衡量变量之间的相关性。
2024-09-20 09:36:29 561
原创 使用 Python 进行线性回归及梯度下降法优化的详细介绍
本文介绍了如何使用 Python 进行线性回归,包括使用 scikit-learn 的 LinearRegression 进行建模和梯度下降法的优化。我们通过批量梯度下降法实现了参数的优化,验证了其在测试集上的表现。最后,还展示了如何通过 SGDRegressor 使用随机梯度下降法进行线性回归。通过这些步骤,读者可以深入理解线性回归的原理和优化算法的应用。
2024-09-20 09:21:47 948
原创 KNN算法与实战案例详解
交叉验证是一种常用的模型验证方法,将数据集分为训练集、验证集和测试集。通过多次训练和验证,交叉验证可以有效避免模型对特定数据划分的依赖。网格搜索通过遍历预设的参数组合,自动寻找最优超参数。在sklearn中,GridSearchCV可以结合交叉验证来进行网格搜索。KNN算法是一种简单但有效的分类和回归工具,尤其在小规模数据集上有很好的表现。本文介绍了KNN算法的基本原理,探讨了距离计算方式、特征标准化等技术细节,并通过鸢尾花分类和手写数字识别的实战演示了如何使用KNN解决实际问题。
2024-09-19 16:59:29 1167
原创 使用 Stata 构建 VAR 模型的完整指南
本文详细介绍了如何使用 Stata 构建 VAR 模型的各个步骤。从数据准备、单位根检验到最优滞后阶数选择、模型估计及分析,我们循序渐进地展示了 VAR 分析的全流程。通过脉冲响应分析和方差分解,读者可以更好地理解多个变量之间的动态关系。VAR 模型在金融市场分析、宏观经济研究等领域有广泛应用。在实际应用中,通过掌握这些分析技术,研究者可以更深入地理解不同经济变量之间的相互作用。额外学习资源推荐VAR模型学习。
2024-09-19 09:13:35 1048
原创 Python模块化程序设计理念及实战
Python的模块化设计理念为开发者提供了强大的代码复用和组织能力。通过合理地将功能划分为模块与包,开发者可以构建出更加清晰、维护性强、可扩展的项目结构。未来,随着Python生态的进一步扩展,更多强大的第三方库将涌现,为模块化设计带来更丰富的选择和支持。
2024-09-18 13:15:07 1155
原创 oneclick 命令:快速筛选控制变量的利器
oneclick 命令为复杂回归分析中的控制变量筛选提供了一种高效、便捷的解决方案。通过自动化处理,oneclick 能够快速筛选出符合显著性要求的变量组合,帮助用户节省大量时间,并确保分析结果的稳健性。其位图算法的使用,使得筛选过程在处理大量控制变量时更加高效。到这里,oneclick命令介绍就结束了,还在等什么,赶紧试试吧,找出自己心仪的控制变量组合~
2024-09-11 17:17:33 1748
原创 关于DID双重差分的几点说明
diff命令:简单易用,适合标准的DID设计,但灵活性有限。回归命令(xtreg等):更灵活,适合处理复杂的DID设计,尤其在处理多期、多组等情况时。DID分析通过回归模型实现,不仅能够有效捕捉处理效应,还能控制多种潜在干扰因素,并提供稳健的统计推断。这使得回归方法在实际研究中比简单的差分操作更具优势和适用性。
2024-09-03 17:45:13 500
原创 快速了解双重差分法(DID)及其在 Stata 中的应用
双重差分法是评估政策影响的有力工具,它通过比较不同组别的差异变化,能够有效识别政策的净效应。在 Stata 中,diff 命令简化了 DID 的操作,使得研究人员可以轻松实现回归分析、稳健性检验等步骤。尽管 DID 简单易用,但其核心假设和稳健性检验非常关键,尤其是共同趋势假设的验证,需要格外注意。通过合理的模型设定和稳健性检验,DID 能够为政策效应的评估提供更为精确的结果。
2024-09-03 16:56:44 1957
原创 深入理解Seaborn库的高级功能(二)
Seaborn库通过简单直观的API,极大地简化了数据可视化的过程,同时提供了丰富的绘图选项和自定义功能。无论是用于探索性数据分析,还是最终的报告展示,Seaborn都能够胜任。在实际应用中,结合Seaborn的这些高级功能,能够帮助我们更好地理解数据的内在关系,提升数据分析的深度和质量。通过不断实践和探索,相信你会在Seaborn的使用中获得更多乐趣,并进一步挖掘其强大的潜力。深入了解Python数据可视化库——Seaborn(一)
2024-08-29 15:37:21 1737
原创 深入了解Python数据可视化库——Seaborn(一)
Seaborn是一个Python数据可视化库,旨在使绘制统计图表变得更加简单和优雅。它构建于Matplotlib之上,并对其进行了封装,提供了更加直观和便捷的API,适合快速生成美观的图表。Seaborn专注于数据集的探索性数据分析(EDA),尤其在处理复杂的数据集和统计关系时,Seaborn能够自动进行许多底层设置,从而使得用户无需过多关注底层的细节即可生成高质量的图表。Seaborn作为Python中强大的数据可视化库,为我们提供了便捷而美观的统计图表绘制方法。
2024-08-29 09:09:48 1099
原创 Pandas库性能优化指南:从基础到进阶(终)
Pandas是Python中广泛使用的数据处理库,凭借其强大的功能和易用性,深受数据科学家和开发者的青睐。然而,Pandas在处理大规模数据时可能会遇到性能瓶颈,导致执行效率低下。本文将深入探讨如何通过一系列优化技巧,提升Pandas的性能表现,确保代码既高效又保持可读性。
2024-08-28 17:56:06 1325
原创 使用 Pandas 进行数据可视化:全面指南(六)
在 Pandas 中,DataFrame 和 Series 对象都具有 plot() 方法,用于绘制各种类型的图形。这些图形包括折线图、柱状图、散点图、直方图、箱线图等,能够满足日常数据分析中的大部分需求。plot() 方法基于 Matplotlib 库,提供了一种简单而高效的方式来绘制常见图形。通过设置 plot() 的参数,我们可以轻松地自定义图形的类型、样式、颜色和大小等属性。
2024-08-28 09:11:22 1323
原创 Pandas 中的日期时间处理:深入理解与实战(五)
在 Pandas 中,日期时间数据的处理和分析功能非常强大。无论是基本的时间对象创建、转换,还是复杂的时间序列操作,Pandas 都能提供便捷高效的解决方案。随着时间序列数据在金融、气象、交通等领域的广泛应用,深入掌握 Pandas 的时间数据处理技巧将大大提升数据分析的效率和准确性。希望本文能帮助大家更好地掌握 Pandas 中的日期时间处理。
2024-08-27 22:43:32 965
原创 深入理解Pandas:数据处理的核心技能与应用(四)
Pandas库为数据处理提供了极其丰富的功能,从数据的修改、转换,到分组、格式转换,再到缺失值处理和查重,涵盖了数据分析中的各个方面。通过掌握这些操作,开发者可以更加高效地进行数据清洗和分析,为后续建模和数据可视化打下坚实基础。
2024-08-27 09:09:20 1130
原创 深入解析Pandas的Series与DataFrame索引和切片操作(三)
本文系统介绍了Pandas库中的索引与切片操作,包括Series和DataFrame的基础操作、排序、数据替换以及分组聚合。掌握这些方法能够帮助开发者更加高效地进行数据处理与分析。通过灵活使用loc、iloc、query等功能,可以快速筛选、定位和操作数据,为后续的数据分析和建模提供强有力的支持。在数据分析和机器学习的实践中,Pandas的索引与切片操作无疑是最常用的基础技能之一。
2024-08-26 09:27:29 1467
原创 深入解析Python的Pandas库:数据分析的利器(二)
本文通过多个方面深入探讨了Pandas库的基本功能与常见操作。从数据的初步了解、列的操作到索引的管理,Pandas提供了全方位的工具支持,极大地提升了数据处理的效率。通过掌握这些方法,开发者可以更加高效地处理复杂的数据任务。Pandas在未来的数据分析、科学计算和人工智能领域将继续发挥重要作用。
2024-08-26 08:43:31 1229
原创 深入理解Python数据分析利器——Pandas库详解(一)
Pandas是Python中专为数据操作和分析设计的开源库,提供了高性能的数据结构和丰富的数据操作工具。Pandas的主要目标是成为数据分析领域的高级工具,解决多种数据格式的处理需求。无论是表格数据(如SQL表或Excel表),还是多维数组、时间序列数据,Pandas都能轻松应对。Series:一维数组,包含数据和对应的索引。DataFrame:二维表格数据结构,既有行索引也有列索引,类似于电子表格或SQL表格。接下来,我们将通过具体代码示例详细介绍如何使用这两个数据结构以及Pandas的常见功能。
2024-08-23 09:48:05 4383
原创 使用 Python 绘制词云图的详细教程
词云图(Word Cloud)是数据可视化中常用的一种技术,通过将文字以不同的大小、颜色和方向排列,以展示文本数据中词汇的频次和重要性。对于文本分析、情感分析、关键词提取等应用,词云图都能够直观地展现信息。本文将详细介绍如何使用 Python 中的 wordcloud 库从 Excel 数据绘制词云图,帮助您快速上手词云图的生成和定制化。
2024-08-22 09:00:20 1960
原创 深入理解Python中的Numpy库:统计函数、矩阵运算与魔法命令详解(三)
IPython提供了多种魔法命令,如%time、%timeit、%memit和%mprun,用于性能分析和内存监控。%time:测量单行代码的执行时间。%timeit:多次执行代码以获得平均执行时间,支持行模式与单元格模式。%memit:分析代码块的内存使用情况。%mprun:逐行分析代码的内存消耗。Numpy库提供了丰富的统计函数、矩阵运算与数组操作功能,配合广播机制和IPython的魔法命令,开发者可以轻松应对复杂的数据处理需求。
2024-08-21 09:08:05 850
原创 深入了解Python中的Numpy库:索引、切片与数组操作详解(二)
本文详细介绍了Numpy库中的索引与切片、多维数组的变换、拼接与分隔等操作,以及常用的数学函数。在数据科学与工程应用中,这些操作是高效处理数据的基石。未来,随着数据规模的进一步扩大,Numpy的核心功能将继续发挥重要作用,同时新技术和优化手段也将不断涌现,为数据处理提供更强大的支持。往期回顾深入了解Python中的NumPy库(一)
2024-08-21 08:51:07 746
原创 使用 Stata 进行回归结果导出与分析:全流程讲解
本文详细介绍了如何在 Stata 中使用 outreg2、esttab(推荐)、reg2docx 等命令导出回归结果。每个工具都有独特的优点,用户可根据需求选择适合的命令。
2024-08-20 21:39:32 5281
原创 深入了解Python中的NumPy库(一)
NumPy是Python语言的一个开源库,旨在提供高效的多维数组对象及与之相关的各种运算。其核心是支持多维数组类型(ndarray),这使得在Python中进行高效的数值计算成为可能。通过ndarray对象,NumPy提供了多种数组操作,例如切片、索引、广播、形状操作等,同时还支持快速的矩阵运算和向量化运算,极大地提高了程序的执行速度。NumPy库作为Python科学计算领域的基石,为处理多维数组和矩阵运算提供了极为高效的工具。通过掌握NumPy,开发者可以轻松实现复杂的数据分析和计算任务。
2024-08-20 09:03:22 1131
原创 深入理解LDA主题模型及其在文本分析中的应用
本文详细介绍了LDA主题模型的基本原理,并通过Python代码演示了如何实现和应用LDA进行文本主题提取。LDA作为一种经典的主题模型,虽然存在一定的挑战,但在文本挖掘领域依然具有广泛应用。未来,随着深度学习技术的发展,基于神经网络的主题模型**如神经主题模型(NTM)**可能成为LDA的重要替代方案,但LDA在解释性与计算效率上的优势使其依然具有重要地位。
2024-08-19 20:14:18 1930
原创 使用多种机器学习模型进行情感分析
使用 TF-IDF 与贝叶斯分类器进行情感分析是一个常见且有效的组合,特别是在文本分类任务中。贝叶斯分类器(通常是朴素贝叶斯分类器)等机器学习模型具有计算简单、效率高的优点,且在文本分类任务中表现良好。接下来,我将详细讨论结合 TF-IDF 和贝叶斯分类器等机器学习模型进行情感分析的实现步骤。
2024-08-18 22:18:01 602
原创 使用TF-IDF进行情感分析的实战指南
TF-IDF是一种常用于文本挖掘和信息检索的加权方法,用于评估一个词语在一个文档集合或语料库中的重要程度。TF(词频):表示一个词语在文档中出现的次数。词语出现次数越多,TF值越高。IDF(逆文档频率):衡量词语在整个语料库中是否具有区分度。某个词语在多个文档中出现的频率越低,其IDF值越高,反之亦然。通过TF-IDF加权,可以有效地突出具有区分度的关键词,同时降低那些在所有文档中普遍存在的常见词的权重。对于情感分析,TF-IDF可以帮助我们提取出具有情感倾向的词语,并通过情感词典进行归类。
2024-08-18 21:50:43 856 1
中国家庭收入调查数据1995-2018
2024-10-22
财务与技术指标双剑合璧:智能股票筛选与交易策略揭秘
2024-10-16
智能车竞赛介绍及简单案例分析
2024-10-08
如何使用Rust和Actix-web框架构建一个基本的Web API管理系统
2024-10-08
Object-C(Objective-C)-C语言的扩展
2024-10-08
Fortran(Formula Translation)语言介绍
2024-10-08
Swift语言教程&案例
2024-10-08
计算机二级考试试题及参考资料与心得攻略
2024-10-08
了解YOLOv10(You Only Look Once version 10)及其应用
2024-10-08
ACM(国际大学生程序设计竞赛)比赛经验分享
2024-10-08
C#(读作“C sharp”)语言教程与案例
2024-10-08
Delphi教程与案例
2024-10-08
PHP(Hypertext Preprocessor,超文本预处理器)语言教程与案例
2024-10-08
Java课程设计/项目设计:图书管理系统
2024-10-08
汇编语言教程(一些基本概念)与案例
2024-10-08
JavaScript语言教程与案例
2024-10-08
Java语言教程与案例
2024-10-08
C#课程设计/项目设计:《图书管理系统》
2024-10-08
C++课程设计/项目设计:《学生成绩管理系统》
2024-10-08
一种动态类型、面向对象的编程语言-Ruby入门
2024-10-08
华为OD等企业的真实面试或笔试中搜集到的题目资料,这些题目涵盖了不同领域和难度级别,有助于学子们更好地备考
2024-10-08
毕设选题及思路-数字金融的碳减排效应
2024-10-08
LabVIEW介绍及小项目示例
2024-10-08
MATLAB语言入门教程与应用场景实例
2024-10-06
SQL数据库操作教程及实战案例详解
2024-10-06
美国数学建模竞赛MCM/ICM经验全面分享
2024-10-06
大学生创新创业竞赛的大创经验和项目资源共享
2024-10-06
数据结构与算法实验:基于Python的学生教程
2024-10-06
秋招知识要点总结:计算机基础知识、编程能力和非技术知识全攻略
2024-10-06
Python脚本工具自动化任务管理和奖励系统
2024-10-06
UE4角色移动系统C++实现案例
2024-10-06
信效度检验的方法与评估标准
2024-10-06
各城市数字金融工具变量-1984年固定电话数量和邮局数量
2024-10-04
数字金融工具变量(31个省份)-1984年固定电话数量和邮局数量
2024-10-04
31个省份工业废水排放量(万吨)、工业二氧化硫排放量(万吨)、工业烟尘排放量(万吨)数据,以及熵权法得分
2024-10-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人