拉普拉斯变换公式表_变换的真谛:“拉普拉斯变换”最美的空间结构模型

前面介绍的傅里叶变换是在频域内分析波的特性,但对于无限放大的信号,却无法处理,所以必须对范围推广到复频域,如果把傅里叶变换看做是二维空间的话,那么拉普拉斯变换就是三维空间。

学过信号处理和高数的伙伴对这个公式并不陌生,看上去很乏味,其实背后的原理让人着迷:

002649fd3ae7e3d9bf04e0e156ad84dd.png

因为是推广到复平面,首先我们来看含有复数的指数参数含义:

如下s是个复数,所以可以分解为实部和虚部,但对时间而言S始终是常量,

b4322f422ff3e89ff7e7491f3fc4d9f8.png

但对整体e^s而言,它的旋转半径是e^0.1t, 旋转角度是1t ,所以图像是半径不断增加的螺旋状。

53b8156e05957455a94d926293382281.png

如果增加s虚部:

意味着同一时刻的旋转角度增加,即杆子的速度加快

934d355e10bd7c657ed2e834d9d96705.png

比较:2t相比上面的1t而言,同一时刻的旋转角度增加,会旋转的更快,螺距会变小

d4079b4e82439eb1ccd41dac3507f322.png
04553f4b4dbd09a5785b1b360275fb68.png

如果增加s的实部

意味着旋转半径会变大,如下e^0.2t时图形

aaed3843f0dfaa69615413e524f93c8f.png

e^0.1t时图形

850c883ac4aa1d69bca2920e600ac9a9.png

但同一时刻的旋转角度不变,所以螺距不变,仅是旋转半径增大。

如果实部为零,则旋转半径是常数1,图形就是一个均匀的螺旋线。其实这就是傅里叶变换的特性

83c16aec5f29c378319ab86c2da70a8e.png

实部是3时,就是一个旋转半径为3的均匀螺旋线。

6447868bdeb731dced1c0012ca2a68bf.png

如图两个实部相等的函数叠加,空间图形就是余弦波,因为他们两个起始角度相反,在空间上抵消,所以仅留下平面上的图形,

172eed4ef178bf30e0bd24e26adb8cba.png

如果改变实部和虚部,将两个指数函数叠加:结合上述的分析和傅里叶级数就很容易理解:

51d473cc64417b2ff484fe38450e8a8d.png

多个指数函数叠加,因为起始角度相互抵消,所以就留下水平面上旋转半径不同的图形。

30046c6ec6bb54830ebd42b13b7777a0.png

如图

f87307608158db489f33042026273de6.png

通过这种方式将指数函数叠加在一起就可以创建任意的图形,这是本篇的重要思想。

结合前面的傅立叶级数和傅里叶变换,我们可以看到复指数将波形拓展到空间的任意角落,这是傅立叶变换所没有的,下一篇继续讨论由此得出的拉普拉斯变换公式原理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值