随机森林模型代码_评估变量贡献度并进行模型预测——利用随机森林模型或广义线性模型...

本文介绍了如何使用随机森林模型处理数据缺失值,并探讨了模型中各变量的贡献度。通过建立随机森林模型,不仅完成数据填充,还展示了模型预测测试集的能力。同时,提到了广义线性模型作为替代方案,但主要焦点在于随机森林的运用。
摘要由CSDN通过智能技术生成

参考资料:
随机森林(2)R实战 [https://www.yuque.com/biotrainee/biostat/chapter3-24]

关于决策树及随机森林模型的理论基础可以参考优雅R 微信公众号文章:https://mp.weixin.qq.com/s/fHDxqOOTW2CbKbSDVOD0bg

1、数据

> data1   success_rate body.mass..g..x Migration.distance..km.. Mass...average...g Length...average...mm1     0.0000000            30.0                   6052.5              36.00                 195.02     0.0000000             8.6                     19.8               8.00                 140.03     0.9453125          1141.0                   1678.2            1082.00                    NA4     0.0000000            54.5                   1238.7              57.75                 181.05     0.9981481           354.5                      0.0             358.70                    NA...<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值