svm预测结果为同一个值_svm-硬/软间隔-分类

本文介绍了SVM中的软间隔概念,解释了拉格朗日乘子法如何将原问题转化为对偶问题,并探讨了SMO算法在解决软间隔SVM中的应用。通过SMO算法,可以高效地求解支持向量机的优化问题,特别是通过启发式方法选择需要更新的参数,从而更新模型的权重和阈值。
摘要由CSDN通过智能技术生成

最近在看oneclasssvm突然想到原来的svm还没洗完,打开西瓜书补充一下。

漫漫成长:拉格朗日乘子法与KKT条件详解​zhuanlan.zhihu.com
漫漫成长:拉格朗日乘子法与KKT条件详解​zhuanlan.zhihu.com
如何理解拉格朗日乘子法?​www.zhihu.com
57d9cd28777bb43750adafac400d7ec4.png

关于拉格朗日的详细例子可以看第二个链接。

关于拉格朗日和kkt条件可见上,很好的把拉格朗日和kkt与梯度下降法联系到一起方便理解,一般梯度下降法处理没有约束的优化问题,这也是大部分常见有监督机器学习算法使用的优化方法,无脑梯度下降呗,nn再配点启发式的改造。

如果有等式约束就用拉格朗日转化成无约束问题求解。

如果有不等式约束就拉格朗日+kkt然后想办法求解(我反正只知道svm的smo可以快速求解这个问题,要不然就用二次规划算法求)

27b8ec885642372f12dcbfdc90ef0cf0.png

from 西瓜书:

形式上svm和线性回归类似:

31d05a6bd6a068decf67024f22ef7a0f.png

我们最终训练出来的svm的形式就是W*X+b,预测的时候把样本带入计算出W*X+b然后和正负1比较,大于1则属于样本1,小于-1则属于样本-1,否则就是落于间隔中无法判断。

直观来看:

d806115204a35186c786d3b5f0690a25.png

两直线(或者超平面)的间隔为:

b6f7eee44664a9a1253268674f3d2d47.png

具体可参考高中数学公式,两直线的距离的计算公式推广到超平面也是一样的形式。这个间隔称为margin。我们的目的是找到最大margin的超平面对应的公式:

2cc62727b47ac6e17b16ec35ed7e8d07.png

直观上这样最鲁棒,间隔最大最不容易对未知的样本错分。

然后我们把这个实际问题用数学公式抽象出来:

9f461ba2a631940600a109a0b9d4cc59.png

然后统一成最小化的形式:

5342310eb9fc0951fbd6efd670681b09.png

这里W右上角多了个平方对最重要优化的结果没有影响,是为了后面的计算方便而加上的,这里改成次方,4次方。。。之类的都没有影响,因为||W||本身就是一个正数。

这样我们就得到了SVM的基本形。

5342310eb9fc0951fbd6efd670681b09.png

针对这种形式我们没有办法直接使用梯度下降法,最优化式子里面x都没有。。。x出现在约束项里何从下手。这个时候拉格朗日乘子法就派上用场了。

使用拉格朗日乘子法将上面的公式转化为其所谓的对偶问题的形式:

72b25f0c4a776646b0cddac7d0976c46.png

586caae19424f496f6dbb283e5d77da5.png

将6.9带入原式可得:

1cbbdbc2240c22abccab60840ca49d1e.png
对偶问题,最小化变成最大化,公式死记硬背就完事儿了

这样就得到了原始问题的对偶问题形式了,我们只要求解出

就能根据6.9式得到W了,但是b求不出来,怎么处理b后面再说。

2b5a5d7ca412118b9e61abfdd3366d10.png

注意到原始的问题的约束条件不是等式约束而是不等式约束,所以这里要引入kkt条件:

力学渣:浅谈最优化问题的KKT条件​zhuanlan.zhihu.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值