pandas pivot 计算占比_pandas使用9:如何处理时间序列数据

本文介绍了如何使用pandas处理时间序列数据,包括将datetime列转换为datetime类型,利用Timestamp对象获取时间信息,通过pivot函数变换数据布局,以及使用resample方法重采样数据。此外,还探讨了datetimeIndex的优势和时间序列的四个核心概念:日期时间、时间差、时间跨度和日期偏移量。
摘要由CSDN通过智能技术生成

如何处理时间序列数据?

import pandas as pd
import matplotlib.pyplot as plt
air_quality = pd.read_csv("data/air_quality_no2_long.csv")
air_quality = air_quality.rename(columns={ "date.utc": "datetime"})
air_quality.head()
city country datetime location parameter value unit
0 Paris FR 2019-06-21 00:00:00+00:00 FR04014 no2 20.0 µg/m³
1 Paris FR 2019-06-20 23:00:00+00:00 FR04014 no2 21.8 µg/m³
2 Paris FR 2019-06-20 22:00:00+00:00 FR04014 no2 26.5 µg/m³
3 Paris FR 2019-06-20 21:00:00+00:00 FR04014 no2 24.9 µg/m³
4 Paris FR 2019-06-20 20:00:00+00:00 FR04014 no2 21.4 µg/m³
air_quality.city.unique()
array(['Paris', 'Antwerpen', 'London'], dtype=object)

使用pandas的datetime类型

1、我想把datetime列从文本转换成datetime类型

air_quality["datetime"] = pd.to_datetime(air_quality["datetime"])
air_quality["datetime"]
0      2019-06-21 00:00:00+00:00
1 2019-06-20 23:00:00+00:00
2 2019-06-20 22:00:00+00:00
3 2019-06-20 21:00:00+00:00
4 2019-06-20 20:00:00+00:00
...
3442 2019-04-09 06:00:00+00:00
3443 2019-04-09 05:00:00+00:00
3444 2019-04-09 04:00:00+00:00
3445 2019-04-09 03:00:00+00:00
3446 2019-04-09 02:00:00+00:00
Name: datetime, Length: 3447, dtype: datetime64[ns, UTC]

datetime列的初始值是字符串,不支持任何datetime操作(例如,提取年份、星期等等)。通过应用to_datetime函数,pandas将解析字符串并将其转换为datetime(例如datetime64[ns, UTC])对象。在pandas中,我们称其datetime类型(由panda.Timestamp对象定义),它类似于python标准库中的datetime.datetime对象。

由于很多数据集将日期时间信息包含在其中一列中,因此pandas输入函数,例如.read_csv()在读取数据时,可以使用parse_dates参数将列的列表作为Timestamp对象读取到日期列。Timestamp对象非常有用,它有很多有用的特性。

1.1、时间序列数据中的起始和终止日期

air_quality["dateti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值