matlab 求控制系统积分误差ise,基于MATLAB的自适应飞行控制系统参数整定

l引言导弹的动力学模型表现为典型的非线性时变特性。自60年代以来,采用自适应控制技术来解决导弹动力学特性变化带来的问题,以提高飞行控制系统的性能的方法一直很受重视。文献[1]给出了一种基于系统暂态响应的参数自整定方法,该方法直接从阶跃或脉冲响应中获得简单过程的模型参数,进而在满足“加权误差平方积分(ISE)”指标最小的条件下,整定PID控制器的参数。文献[2]借助于稳定性判据对待整定的参数施加约束,可保证在对系统的参数进行优化时系统的稳定性。工程上实现的一种途径是根据弹上敏感元件提供的信息,借助于数字计算机进行较完善的在线系统辨识和参数整定。这种方法虽可获得良好的性能,但计算量太大,弹上计算机必须要有足够高的计算速度才能保证控制系统的实时性。本文兼取文献[1]和文献[2]的思想,提出一种仍然是基于经典控制理论的飞行控制系统设计方法。该法应用优化技术对控制系统进行设计,其特点是控制参数的优化离线由计算机自动完成,避免了繁琐的模型参数在线辨识计算。借助于MAT[AB软件,该方法从优化设计到最后的数据处理都可以非常简单地实现。2导弹飞行控制系统简化数学模型本文以某个飞行控制系统的俯仰通道作为研究对象,它由两个反馈环节构成,分别是俯仰角速度反馈和俯仰角反馈。在简化舵系统等环节时,俯仰通道的简化模型可表示如图l。待整定和优化的参数共三个,分别是俯仰角速度反馈系数屉.、两个前向放大系数后:和后,。图l俯仰通道简化结构图图中各量的意义如下:d:舵偏角,rad;l,:导弹的俯仰角,rad;心、%、已、乃等参数的定义参见文献[3]。3设计过程3.1设计方法简介该方法结合自适应的思想,在设计中采用多点计算、总体拟合的手段来获得具有自适应能力的控制规律,减小控制系统对外界环境参数变化的敏感度。具体做法是:先选择由弹上敏感器件可测量且对导弹动力学模型有影响的若干环境因素(例如:导弹飞行高度日和导弹的速度%等)作为参变量。这些参量在容许取值范围内张成一个空间,包含着导弹在飞行过程中由这些参量体现的所有可能的状态组合。本文选择飞行高度日和飞行速度K这两个量进行考虑。设定飞行高度取值范围为[O,10000]m,飞行速度的取值范围是[120,340]m/s,这样做并不失一般性;再从该空间中取出一定数量的点(它们在这里类似于特征气动点),结合拟订的目标函数,利用优化方法对控制参数进行整定(寻优过程见下文)。取点时,应该尽量增大它们在全空间的密度。对高度每隔.500m取一个点,为21个点;对速度每lOm/s取一个点,为23个点。这样,一共从日和矿张成的空间里取出483个点进行计算。当所有点的整定工作完成后,就获得l一系列控制参数。最后,对这些控制参数在全空间上进行拟合,将得到它们连续形式的控制规律集合K=F(日,y,…)。不难理解,这些控制规律将随着环境参数变化而变化。因而,若将控制规律“装定”到弹上计算机中,弹上计算机读取敏感元件的相关测量信息,就可以直接生成相应的控制参数,不再需要进行系统的在线辨识计算,负担大为减轻。由此可以提高系统的实时性,其优越性是明显的。下文就结合该俯仰通道模型来说明该方法的MAT[AB实现和应用。3.2目标函数应用优化方法设计系统,其关键在于找到能充分反映系统设计要求的目标函数。从被控对象的时域响应着手,在满足加权误差平方积分(ISE)指标最小的条件下,应用非线性约束最小二乘优化方法对控制参数进行自动整定。从所选取的目标函数看,只要在选取的积分时间内系统进入稳态并持续一段时间,那么该目标函数就包含了系统在跟踪阶跃输入时的稳态误差和超调量。目标函数对这些

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值