求一个任意实数c的算术平方根g_【“数”你好看】任意角三角函数与诱导公式...

本文介绍三角函数的基础知识,包括弧度的认识、弧长与扇形面积的计算、任意角的概念及三角函数的定义,并介绍了诱导公式及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6b056e7bdefcbee5bcf18fd4541626ae.png

三角函数是高中数学的重要内容,无论是国内还是国际三大体系,AP、IB、Alevel中都有三角函数的一席之地,而且要求不低,比如ALevel Further Math要求掌握利用积化和差求积分,(这一点可以参看《三角函数积分方法总结》)。而且三角函数还会和求导、积分、复数等联系在一起,所以学好三角函数非常重要。

本文主要讲解以下五个知识点:

1.认识弧度
2.弧长与扇形面积计算
3.角度的推广,任意角
4.任意角下的三角函数
5.诱导公式

一、认识弧度

在初中我们用度(°)来衡量一个角的大小。就像克、千克、吨等同样衡量质量一样,我们现在引入弧度(Radian)来衡量一个角度的大小。那么1弧度角有多大呢?

弧长为半径长的弧所对的圆心角为1弧度。

b83a4d90c5e1b34747d71eb403a1efeb.png

半径为

的圆其圆周长为
,对应
,所以
,1弧度等于

b9364892a99a5609bd83d92504299189.png

根据弧度的定义以及

,可以得到下面弧度与角度的转化公式:

18fa0626f0e2e18fb771238dc2e958a8.png

常见的比如:

注:以后数字右上角没有"o"的都默认在弧度制下面。

二、弧长与扇形面积计算

那么为什么要引入弧度制?

第一个引入弧度制能够帮助我们简化一些运算,比如接下去讲的扇形弧长与面积的计算。

c6f4691b8fcf6ac7827353c5096635ef.png
图:圆、扇形各部分英语表达

在度制下,我们是利用成比例的方法来求解弧长与面积的,也就是算出圆周与圆面积,然后根据角度大小求出占比,从而求得对应的弧长与扇形面积。不过,引入弧度制后,我们有了更加简单的公式如下:

90584bcd3ab4fff75970254e51a52468.png

919ba692657d56de3d4168d193b4a9da.png

注: 扇形面积公式

很像三角形面积公式底乘高除以2。

当然引入弧度不仅仅是为了便于计算扇形弧长与面积,而是把我们的实数与角度建立起了一一对应的关系,把初中所学的三角函数定义域从

变成了所有实数,接下去就讲解一下任意角下的三角函数。

三、角度的推广,任意角(General angle)

如果在初中被问到:请画出一个大小为

的角?

我们肯定是一脸问号……我们学的角度不都是正的吗?怎么还出现负的了??

如果我们还是像初中一样在直角三角形中去定义角度大小,那么肯定是画不出负角度的。因此,我们这里要重新给出角大小的定义。接下去我们用旋转来定义一个角度的大小:

我们规定x轴正半轴为始边,逆时针旋转为正、顺时针旋转为负,如果逆时针旋转

大小会有一条终边,那么通过旋转得到的角的大小就是
;如果顺时针旋转
大小,那么这个角就是

423e6d955c1bb8020c14b7d76434a4cf.png

所以,你要画一个

角,只需要顺时针旋转
,那么这个角就是所要求的角了。

至此,无论什么角我们都能够画出来了,大不了多转几圈就可以了。

四、任意角下的三角函数

在讲解任意角的三角函数之前,我们先简单回顾一下初中是如何定义三角函数的。

初中三角函数是在一个直角三角形中定义的,有一个直角三角形

812018f635633efd22b88a7ed03e6aff.png

那么如何定义任意角下的三角函数呢?

在上一小节中我们知道了任意角有一条始边与终边,类似的我们也可以定义三角函数。不妨设终边最后落在了第二象限上,如下图所示。

8546ca2841b873f5189b0e23ad04f65b.png

然后过点A作x轴的垂线,垂足为B,那么我们就有了一个直角三角形

,于是我们就可以在这个基础上定义三角函数了。

类似的,无论终边落在那个象限上我们都可以利用在终边上取一点,做垂线来定义三角函数。并且,在终边上任意取一点,最后得到三角函数值是一样的。因为

,所以对应边长成比例。

fbfccd4ad07de70a34d898f903f470fd.png

但是这样子计算三角函数值也太复杂了,在终边上任取一点坐标,要算到原点的距离还需要求比值。

所以为了简化我们的计算,引入了单位圆。

d0f34aec0a9b86e69e57c18ebb95b3e3.png
圆心为原点、半径为1的圆称为单位圆。

那么引入单位圆后有什么好处呢?

我们可以过终边与单位圆的交点作垂线,求对应的三角函数值。因为圆周上的点到圆心的距离为1,于是

,因此我们可以发现交点的坐标x和y的值就对应了

726844221c4c6bb2104483f5f1d87faa.png

无论

是多少,
我们只需要去找终边与单位圆的交点坐标
就可以了。

6f0b8bedfa0bf6c67c0bb3376f589c05.png

于是,我们计算任意角的

时就先画出终边,然后求与单位圆交点,比如下图我们通过计算坐标求

c2597b754995a528583091ae6b118c2b.png

根据勾股定理得

,所以

在直角三角形中我们没有办法知道

,但是通过单位圆我们很容易看到90°的终边与单位圆的交点为(0,1),所以

五、诱导公式

三角函数是具有周期性的,比如终边再原来的基础上再转

还是与原来的终边重合,且有些角度的三角函数值是有关系的,比如
等等。

下面是一些常见的转化公式:

公式一:

公式二:

公式三:

公式四:

公式五:

公式六:

上述公式是弧度制版的角度转化公式,当然还有角度制版的转化公式。

但是真的有必要把上面公式一个一个记下来吗?

其实是不用的,我们只需要记住下面十字口诀就可以了:

奇变偶不变,符号看象限

首先我们把需要转化的三角函数整理为标准形式

接下去判断

是奇数还是偶数,
(1)如果
是偶数,那么

(2)如果
是奇数,那么

这样前半句就结束了,那么后半句就是要在得到的三角函数前面要加个正负号。

那么到底加正好还是负号呢?

这是由

的正负性所决定的:
(1)如果
是正的那么诱导出来的三角函数就是正的,“+”号我们就不标出来了;

(2)如果
是负的那么诱导出来的三角函数前面还要添加一个负号。

不过要注意的是,这里的

我们都当成一个锐角来处理!

比如

(1)
,那么
,所以要变,

(2)
是先逆时针旋转
然后再顺时针旋转一个锐角,因此终边落在了第一象限上,而
看的是x值,是正的,于是

再比如

(1)这是
,是偶数,所以不变,

注:要转化为标准形式。
(2)
是顺时针旋转一个锐角度,那么终边落在了第四象限上,而第四象限上
是负的,所以

关于各类三角函数在各象限的正负性,我们可以画图判断。在国际教材中还有一句口诀叫“ASTC”,分别对应四个象限:

(1)第一象限,A,也就是ALL,所有的
都是正的;

(2)第二象限,S,也就是Sin,只有
是正的;

(3)第三象限,T,也就是Tan,只有
是正的;

(4)第四象限,C,也就是Cos,只有
是正的。

记口诀或者画终边都可以判断三角函数的正负性,两种方法都可以。

上述内容都是比较基础的知识,三角函数的内容还有很多,比如在下文中我们用两种方法证明了两角和差公式,并以此讲解了二倍角公式、辅助角公式、和差化积与积化和差:

双木止月Tong:【“数”你好看】三角函数两角和差公式​zhuanlan.zhihu.com
a9fc8779a25e11e7bc1aa001974771cf.png

欢迎交流讨论~

想了解更多国际数学课程的知识,可参阅:

双木止月Tong:【国际数学课程】目录​zhuanlan.zhihu.com
01dfadd6d2b60dc0d6642a75fe9e1afb.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值