
三角函数是高中数学的重要内容,无论是国内还是国际三大体系,AP、IB、Alevel中都有三角函数的一席之地,而且要求不低,比如ALevel Further Math要求掌握利用积化和差求积分,(这一点可以参看《三角函数积分方法总结》)。而且三角函数还会和求导、积分、复数等联系在一起,所以学好三角函数非常重要。
本文主要讲解以下五个知识点:
1.认识弧度
2.弧长与扇形面积计算
3.角度的推广,任意角
4.任意角下的三角函数
5.诱导公式
一、认识弧度
在初中我们用度(°)来衡量一个角的大小。就像克、千克、吨等同样衡量质量一样,我们现在引入弧度(Radian)来衡量一个角度的大小。那么1弧度角有多大呢?
弧长为半径长的弧所对的圆心角为1弧度。

半径为

根据弧度的定义以及

常见的比如:
注:以后数字右上角没有"o"的都默认在弧度制下面。
二、弧长与扇形面积计算
那么为什么要引入弧度制?
第一个引入弧度制能够帮助我们简化一些运算,比如接下去讲的扇形弧长与面积的计算。

在度制下,我们是利用成比例的方法来求解弧长与面积的,也就是算出圆周与圆面积,然后根据角度大小求出占比,从而求得对应的弧长与扇形面积。不过,引入弧度制后,我们有了更加简单的公式如下:


注: 扇形面积公式
当然引入弧度不仅仅是为了便于计算扇形弧长与面积,而是把我们的实数与角度建立起了一一对应的关系,把初中所学的三角函数定义域从
三、角度的推广,任意角(General angle)
如果在初中被问到:请画出一个大小为
我们肯定是一脸问号……我们学的角度不都是正的吗?怎么还出现负的了??
如果我们还是像初中一样在直角三角形中去定义角度大小,那么肯定是画不出负角度的。因此,我们这里要重新给出角大小的定义。接下去我们用旋转来定义一个角度的大小:
我们规定x轴正半轴为始边,逆时针旋转为正、顺时针旋转为负,如果逆时针旋转

所以,你要画一个
至此,无论什么角我们都能够画出来了,大不了多转几圈就可以了。
四、任意角下的三角函数
在讲解任意角的三角函数之前,我们先简单回顾一下初中是如何定义三角函数的。
初中三角函数是在一个直角三角形中定义的,有一个直角三角形

那么如何定义任意角下的三角函数呢?
在上一小节中我们知道了任意角有一条始边与终边,类似的我们也可以定义三角函数。不妨设终边最后落在了第二象限上,如下图所示。

然后过点A作x轴的垂线,垂足为B,那么我们就有了一个直角三角形
类似的,无论终边落在那个象限上我们都可以利用在终边上取一点,做垂线来定义三角函数。并且,在终边上任意取一点,最后得到三角函数值是一样的。因为

但是这样子计算三角函数值也太复杂了,在终边上任取一点坐标,要算到原点的距离还需要求比值。
所以为了简化我们的计算,引入了单位圆。

圆心为原点、半径为1的圆称为单位圆。
那么引入单位圆后有什么好处呢?
我们可以过终边与单位圆的交点作垂线,求对应的三角函数值。因为圆周上的点到圆心的距离为1,于是

无论

于是,我们计算任意角的

根据勾股定理得
在直角三角形中我们没有办法知道
五、诱导公式
三角函数是具有周期性的,比如终边再原来的基础上再转
下面是一些常见的转化公式:
公式一:
公式二:
公式三:
公式四:
公式五:
公式六:
上述公式是弧度制版的角度转化公式,当然还有角度制版的转化公式。
但是真的有必要把上面公式一个一个记下来吗?
其实是不用的,我们只需要记住下面十字口诀就可以了:
奇变偶不变,符号看象限
首先我们把需要转化的三角函数整理为标准形式:
接下去判断
(1)如果是偶数,那么
![]()
(2)如果是奇数,那么
![]()
这样前半句就结束了,那么后半句就是要在得到的三角函数前面要加个正负号。
那么到底加正好还是负号呢?
这是由
(1)如果是正的那么诱导出来的三角函数就是正的,“+”号我们就不标出来了;
(2)如果是负的那么诱导出来的三角函数前面还要添加一个负号。
不过要注意的是,这里的
比如
(1),那么
,所以要变,
;
(2)是先逆时针旋转
然后再顺时针旋转一个锐角,因此终边落在了第一象限上,而
看的是x值,是正的,于是
。
再比如
(1)这是,
,是偶数,所以不变,
;
注:要转化为标准形式。
(2)是顺时针旋转一个锐角度,那么终边落在了第四象限上,而第四象限上
是负的,所以
。
关于各类三角函数在各象限的正负性,我们可以画图判断。在国际教材中还有一句口诀叫“ASTC”,分别对应四个象限:
(1)第一象限,A,也就是ALL,所有的都是正的;
(2)第二象限,S,也就是Sin,只有是正的;
(3)第三象限,T,也就是Tan,只有是正的;
(4)第四象限,C,也就是Cos,只有是正的。
记口诀或者画终边都可以判断三角函数的正负性,两种方法都可以。
上述内容都是比较基础的知识,三角函数的内容还有很多,比如在下文中我们用两种方法证明了两角和差公式,并以此讲解了二倍角公式、辅助角公式、和差化积与积化和差:
双木止月Tong:【“数”你好看】三角函数两角和差公式zhuanlan.zhihu.com
欢迎交流讨论~
想了解更多国际数学课程的知识,可参阅:
双木止月Tong:【国际数学课程】目录zhuanlan.zhihu.com