python 多重线性回归_多重线性回归假设条件(五)残差正态性

本文介绍了如何检验Python多重线性回归中残差的正态性。通过直方图、P-P图和Q-Q图,分别展示了住院总费用的正态性转换及标准化和学生化残差的正态分布检验,强调了P-P图和Q-Q图在判断数据是否符合正态分布中的应用。
摘要由CSDN通过智能技术生成

1.什么是残差?

残差即因变量的观测值Yi与利用回归模型求出的预测值^ Y之间的差值,反映了利用回归模型进行预测引起的误差。

2.怎么测量残差是否符合正态性?

例子:分析住院费用与医院级别、地区、患者年龄、住院天数等的关系。

数据展示

3901f73ecaa34ad70bca19cce4aecfe0.png

通过P-P图可以检验数据是否符合指定的分布。当数据符合指定分布时,P-P图中各点近似呈一条直线。

Step1:因为多重线性回归要求因变量符合正态分布,因此先利用直方图检验因变量“住院总费用”是否服从正态分布,结果如下:

4822f35b347913a40eadff82ecd84594.png

结果:住院总费用不服从正态分布,需进行数据转换,可使用对数转换。在【转换】→【计算变量】中对“住院总费用”进行对数转换,新变量命名为“stan”。再重新绘制直方图,如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值