下界和下确界的关系_微分基本定理与上确界

题目出自卓里奇《数学分析》第五章第三节的第9道习题。总体难度较大,一些方法借用了其他答主的文章。

是区间
上的二次可微函数。设

证明:

a)若

,则有:

b)

c)在b)中数

不可再减小。

d)若

次可微,且量
都有限,则对于
,量
亦有限且
(提示:利用问题6b)和9b)和归纳法原理。)

a)对于定义在
的函数
,将其在点
上用泰勒多项式展开,得到:
时,有
其中,
介于
之间。

时,有
其中,
介于
之间。

将(1)和(2)式相减,得到:

两边取绝对值,有
所以有

b)

由a)的结论可知,对于任意的

,有
因为不等号右边的式子满足
所以
的一个上界,因为
的上确界,所以对于任何
有关系式:
对于确定的
而言,上式右边随着
的变化而变化,所以
相当于集合
的一个下界。注意到

因为

对于任何
成立,而且因为等号在
时成立,所以
是集合
的下确界。这样就有关系成立

对于

的情况,我们依然可以取
,并重复a)的步骤,得到

注意这里的每个全称量词,在不等式中的每一个全称量词都能带领我们找到确界关系。此外,还要注意到另一个隐藏的任意性,即函数

的任意性,这将是继续做下去的关键。

将不等号右边的式子变形,我们有:

这里运用均值不等式的目的是消去全称量词下的变量

,得到集合的下确界。上式等号成立当且仅当

所以有

观察上面的不等式,左边是任意一个

上的二次可微函数的导数的绝对值,右边是一个关于
的表达式。我们当然希望这个表达式在其他的
的值也大于左边。要怎么做呢?

,所以
,而且

也就是对

作一个平移,这并不会改变函数各阶导数值域确界。

同样的,任取

,重复a)的步骤,我们能得到

根据已经做过的讨论,我们有

因为

,所以

,如果将
看成变化的量,那么
就可以是两个独立的自变量。这表明

不等式左边是只关于x的表达式,右边是只关于s的表达式,将取值看成集合,根据确界引理有

从而

成立。

c)待续...

d)根据提示,我们将考虑使用归纳法来证明这个结论。

作归纳法,首先观察
的情况,
的情况在b)中已经有过讨论。当
时,观察到b)结论中
的任意性,我们可以将
换成
作同样的讨论,这样会得到结论:

于是我们有

可以看到这满足要证的不等式。

所以对于

的情况,我们可以采取同样的方法,在b)的证明中将
分别换成
,重复同样的分析过程,就能得到

现在我们归纳假设当

时有

根据我们做过的讨论,

满足:

因为

,所以应该有

结合归纳假设可得到:

这满足要证明的不等式,所以根据归纳原理,不等式成立。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值