下界和下确界的关系_第七章 二元关系小结(下)

二元关系这一章很重要。本篇包括二元关系的闭包、偏序关系、等价关系等内容,其中包含划分、哈斯图、最大最小元、上下界等小知识点。

338297f1532f6aaa8aa1852f747ef321.png

一、闭包

1.定义:

闭包是包含原关系具有某种性质的最小的关系。

闭包是关系的一种特殊运算,运算结果依然是关系。

闭包有三种,自反闭包、对称闭包、传递闭包。R的自反闭包记作r(R), 对称闭包记作s(R), 传递闭包记作t(R)。

2.求法:

(1).集合表示法中闭包的求法:

设R为A上的关系, 则有

74541715b8dd68787e97bfe987be3f93.png

(2).矩阵表示法中闭包的求法:

设关系R, r(R), s(R), t(R)的关系矩阵分别为M, Mr , Ms 和 Mt ,则有  (1) Mr=M+E   

(2) Ms=M+M '      

(3) Mt=M+M2+M3+…

E 是单位矩阵, M '是 转置矩阵,相加时使用逻辑加。

(3).关系图表示法中闭包的求法:

设关系R, r(R), s(R), t(R)的关系图分别记为G, Gr, Gs, Gt, 则Gr , Gs , Gt 的顶点集与G 的顶点集相等. 除了G 的边以外, 以下述方法添加新的边:

(a) 考察G 的每个顶点, 若没自回路就加一个自回路,得到Gr  

(b) 考察G 的每条边, 若有一条 xi 到 xj 的单向边, i≠j, 则在G中加一条 xj 到 xi 的反向边,  得到Gs

(c) 考察G 的每个顶点 xi, 找 xi 可达的所有顶点 xj (允许i=j ), 如果没有从 xi  到 xj  的边, 就加上这条边, 得到图Gt

例:设A={a,b,c,d}, R={,,,,}, 求r(R), s(R), t(R)。

解:r(R)={,,,,,

s(R)={,,,,,,,}

 t(R)={,,,,,

如果在关系图中解,R和r(R), s(R), t(R)的关系图如下图所示。

e1bc130643f1b64327805a7f4f0e01db.png

7d33c2018fb41daed389652e104bbec5.png

二、偏序关系

1.定义

    偏序关系是非空集合A上的自反、反对称和传递的关系,记作≼.设≼为偏序关系, 如果 ∈≼, 则记作 x≼ y, 读作x“小于或等于”y。

      集合A上的恒等关系IA是A上的偏序关系。

      小于或等于关系,整除关系,包含关系也是相应集合上典型的偏序关系。

      偏序关系的关系图比较复杂,特别是在元素比较多的时候就比较凌乱了。为此,专门有一种图来表示偏序关系,这就是哈斯图。哈根达斯的哈,哈根达斯的斯。是不是感觉很凉爽呢?

2.画法   

     哈斯图是利用偏序关系的自反、反对称、传递性进行简化的关系图。

     特点:三省

      (1)省去自回路。 偏序关系是自反的,每个结点都有自回路,那么自回路也就不是特点了,直接省去。

      (2)省去箭头。 两个连通的结点之间的序关系通过结点位置的高低表示,位置低的元素的顺序在前。

      (3) 省去传递的边。

      比如偏序集的哈斯图如下:

7fe446ba72498f536c2f8bab6b288fb4.png

3.根据哈斯图些序偶

        同样,已知一个哈斯图,要会写出图中所包含的序偶。

        比如: 已知偏序集的哈斯图如下图所示, 试求出集合A和关系R的表达式。

19285b4e736a0cc4cac1f3f6f0a04f62.png

解:A={ a, b, c, d, e, f, g, h}

R={,,,,,,,,,,,,,,,,}

4.哈斯图的8个概念

在哈斯图中,有8个概念,需要大家掌握。它们分别是最大元、最小元;极大元、极小元;上界、下界;上确界、下确界。

定义:

设为偏序集, B是A的子集, y∈B

(1) 若任意x(x∈B→y≼x)成立, 则称 y 为B的最小元

(2) 若任意x(x∈B→x≼y)成立, 则称 y 为B的最大元

(3) 若任意x(x∈B∧x≼y→x=y)成立, 则称 y 为B的极小元

(4) 若任意x(x∈B∧y≼x→x=y)成立, 则称 y 为B的极大元

例:设偏序集,求A的极小元、最小元、极大元、最

大元。

38a993bfb68148f7624fa5ddc856857a.png

极小元:a, b, c, g;  

极大元:a, f, h;

没有最小元与最大元。

总结:

(a) 对于有穷集,极小元和极大元一定存在,可能存在多个。

(b) 最小元和最大元不一定存在,如果存在一定唯一。

(c) 最小元一定是极小元;最大元一定是极大元。

(d) 孤立结点既是极小元,也是极大元。

定义:

设为偏序集,B是A的子集, y∈A

(5) 若任意x(x∈B→x≼y)成立, 则称y为B的上界 

(6) 若任意x(x∈B→y≼x)成立, 则称y为B的下界 

(7) 令C={y| y为B的上界}, C的最小元为B的最小上界或上确界 

(8) 令D={y| y为B的下界}, D的最大元为B的最大下界或下确界

例:

设偏序集,设B={ b,c,d }, 求B的下界、上界、下确界、上确界。

38a993bfb68148f7624fa5ddc856857a.png

解:B的下界和最大下界都不存在;

上界有 d 和 f, 

最小上界为 d。

总结:

(e) 下界、上界不一定存在; 下界、上界存在时,下确界、上确界不一定存在

(f) 下界、上界如果存在不一定唯一

(g) 下确界、上确界如果存在,则唯一

(h) 集合的最小元是其下确界,最大元是其上确界;反之不对.

d582acea86aad67c7a37c3221cd750b9.png

三、等价关系

1.定义

    等价关系是非空集合A上的自反、对称和传递的关系。在日常生活中也有不少等价关系(还记得上课举过的例子吗?你们的回答太搞笑了3a38f05b7bf0226a8b0108685b8a7fbe.png)。

    常见的等价关系有模m同余关系,这个关系很重要,我们在其它的章节以及其它的课程中会多次用到。

 2.等价关系与等价划分

      在一个集合上的等价关系和等价划分是一一对应的。“一一对应“这四个字,表示知道一个等价关系,可以求出一个等价划分;反之,知道一个等价划分,也能求出一个等价关系。

       下面讲述这两种题型的解法。        

        (1)已知A上的一个等价关系R,求R在A上所诱导的划分。

        解法:画出等价关系R的关系图,图中有几个不连通的部分,就有几个划分块。

        例题:设A={1,2,3,4,5,6,7,8},A上的等价关系R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<7,7>,<8,8><1,4><1,7>,<2,5>,<2,8>,<3,6><4,1>,<4,7>,<5,2>,<5,8>,<6,3>,<7,1>,<7,4>,<8,2>,<8,5>},求R在A上所诱导的等价划分。

         解:直接根据R中的序偶画出关系R的关系图。

eec29669d9124341df0a8424e00d66a8.png

      图中的结点分为不连通的三个部分,所以A上由关系R所诱导的划分是{{1,4,7},{2,5,8},{3,6}}.

    (2)已知A上的一个划分S={S1,S2,...,Sn},求S在A上所诱导的等价关系R。

     解法:R=(S1ⅩS1)∪(S2ⅩS2)∪…∪ (SnⅩSn)

     例题:设A={1,2,3,4,5,6,7},确定A上的等价关系R,使R能产生划分{{1,2,5},{4,6},{3,7}}。

      解:R=({1,2,5}Ⅹ{1,2,5})∪({4,6}Ⅹ{4,6})∪ ({3,7}Ⅹ{3,7})

             ={<1,1>,<1,2>,<1,5>,<2,1>,<2,2>,<2,5>,<5,1>,<5,2>,<5,5>}∪{<4,4>,<4,6>,<6,4>,<6,6>}∪{<3,3>,<3,7>,<7,3>,<7,7>}

       ={<1,1>,<1,2>,<1,5>,<2,1>,<2,2>,<2,5>,<5,1>,<5,2>,<5,5>,<4,4>,<4,6>,<6,4>,<6,6>,<3,3>,<3,7>,<7,3>,<7,7>}

1824794958857626b75a364397618121.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值