本文收集了使用python实现杨辉三角的多种解法,主要为网上收集,也有一些是自己写的。从中可以体会python编写一个算法的不同思想和Python语法的特点。
杨辉三角是什么?还是度娘吧,看起来像是这样的:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
...
解法函数是下面这样的。个人觉得第7,8,9,10这几个的实现最为巧妙。
def triangle1():
p = [1]
a = 0
while True:
q = []
i = 0
while i <= a:
if i == 0 or i == len(p):
q.append(1)
else:
q.append(p[i-1] + p[i])
i += 1
p = q
yield q
a += 1
def triangle2():
q = [1]
while True:
yield q
i = 0
while 0 <= i <= len(q) - 1:
if i == 0:
pass
else:
q[i] = p[i-1] + p[i]
i += 1
q.append(1)
p = tuple(q) # or can be p = q[:]
def triangle3():
q = [1]
while True:
yield q
i = 1
while 1 <= i <= len(q) - 1:
q[i] = p[i-1] + p[i]
i += 1
q.append(1)
p = q[:]
def triangle4():
q = [1]
while True:
yield q
for i in range(1, len(q)):
q[i] = p[i-1] + p[i]
q.append(1)
p = q[:]
def triangle5():
p = [1]
while True:
yield p
p = [p[0] if i == 0 or i == len(p) else p[i-1] + p[i] for i in range(len(p) + 1)]
def triangle6():
p = [1]
while True:
yield p
p = [1] + [p[i] + p[i+1] for i in range(len(p) - 1)] + [1]
def triangle7():
p = [1]
while True:
yield p
p.insert(0,0)
p.append(0)
p = [p[i] + p[i+1] for i in range(len(p) - 1)]
def triangle8():
p = [1]
while True:
yield p
a = p[:]
b = p[:]
a.insert(0,0)
b.append(0)
p = [a[i] + b[i] for i in range(len(a))]
def triangle9():
p = [1]
while True:
yield p
p.append(0)
p = [p[i-1] + p[i] for i in range(len(p))]
def triangle10():
a = [1]
while True:
yield a
a = [sum(i) for i in zip([0] + a, a + [0])]
def triangle11(n):
if n == 1:
return [1]
if n > 1:
a = triangle11(n-1)
b = triangle11(n-1)
a.insert(0,0)
b.append(0)
return [a[i] + b[i] for i in range(n)]
n = 0
for i in triangle9():
print i
n += 1
if n == 11:
break
for i in range(1, 12):
print triangle10(i)