一种可能的选择
>>> def group(seq):
for k, v in groupby(sorted(chain(*seq), key = itemgetter(0)), itemgetter(0)):
v = list(v)
if len(v) > 1:
yield v
>>> list(group(some_list))
[[(1, 2), (1, 5), (1, 8)], [(3, 6), (3, 5), (3, 9)]]
另一个受欢迎的选择
>>> from collections import defaultdict
>>> def group(seq):
some_dict = defaultdict(list)
for e in chain(*seq):
some_dict[e[0]].append(e)
return (v for v in some_dict.values() if len(v) > 1)
>>> list(group(some_list))
[[(1, 2), (1, 5), (1, 8)], [(3, 6), (3, 5), (3, 9)]]
那么,使用示例数据哪个更合适呢?
>>> def group_sort(seq):
for k, v in groupby(sorted(chain(*seq), key = itemgetter(0)), itemgetter(0)):
v = list(v)
if len(v) > 1:
yield v
>>> def group_hash(seq):
some_dict = defaultdict(list)
for e in chain(*seq):
some_dict[e[0]].append(e)
return (v for v in some_dict.values() if len(v) > 1)
>>> t1_sort = Timer(stmt="list(group_sort(some_list))", setup = "from __main__ import some_list, group_sort, chain, groupby")
>>> t1_hash = Timer(stmt="list(group_hash(some_list))", setup = "from __main__ import some_list, group_hash,chain, defaultdict")
>>> t1_hash.timeit(100000)
3.340240917954361
>>> t1_sort.timeit(100000)
0.14324535970808938
并且具有更大的随机列表
>>> some_list = [[sample(range(1000), 2) for _ in range(100)] for _ in range(100)]
>>> t1_sort.timeit(100)
1.3816694363194983
>>> t1_hash.timeit(1000)
34.015403087978484
>>>