四阶行列式直接展开_行列式计算题方法大全

本文介绍了计算四阶行列式的方法,包括化上三角形、连加法、滚动消去法、逐行相加减、拆分、直接展开、拉普拉斯公式、加边法、范德蒙德行列式结合加边法以及归纳法,并通过实例详细解析每种方法的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bfe9db1c41c321c449f6369d187818ae.png
本篇文章收录了丘维声《高等代数学习指导书》一书中,及笔者平常做过的觉得有经典意义的行列式计算题

(一):惯例从两道简单的开始热身:

(只需要利用定义就可以算出来)

1.

2.设

,证明:如果
级矩阵
的元素为
,则
必为偶数。

接下来正式进入方法大全

c1f4533dc801e9f900b248b9b2ca4cec.png

方法一:化上三角形行列式:

这是求行列式的最基础的方法,没什么特征好讲的
一般就是一列(行)乘上一个数加到某一列(行),使其转化为上(下)三角形行列式。

1.

提示:这题只需把从第二列开始的每一列提取一个
(
),然后乘一个
加到第一列即可得到一个上三角行列式。

小小的示范一下:

先把第二列的

提出来,得到:

再乘以

倍加到第一行去:

对第一列后面的每一列都这么做,就可以得到上三角形行列式。

另:对于形如下图的行列式,都可以采用同样的方法算

1b517b85b68abe91b97ef718a295bcb9.png

方法二:连加法:

特征: 当你发现行列式每一行(列)的值加起来都相等且不等于0时,试试把他们其余行(列)全部加到第一行(列)去,然后再把这个和提出来,从而第一行(列)就全是1了,从而简化行列式。

3.

4.


方法三:滚动消去法:

特征:当你发现, 相邻的行(列)长得比较相似,很多项长得一样时。不妨试试滚动相减。即:最后一行(列)开始的每一行(列)都减去上一行(列)。

5.

6.

附加题:

这题稍微难点,先利用
滚动消去

再用按一行展开。重复俩次就可以发现规律)

四:逐行(列)相加减法

该方法是将第一行(列)加(减)到第二行,获得的新的第二行再拿去加(减)第三行。
特征: 发现前(后)一行(列)中的元素如果去掉“某个元素”后,再和下一行(列)相加减,就能把下一行(列)的某些元素消去,而不带来新的元素。并且前一行(列)中的那个想要去掉的 “某个元素” 能用同样的方法事先先消掉。
当然值得注意的是:从最后一行开始和从第一行开始,结果往往会不一样,需要读者在做题的时候,选择好到底应该从哪开始。

7.

8.

(空白处为0)
需要提醒一下的是,这和方法三的滚动消去是有所不同的。滚动消去法是用未变动的行去加减相消,而方法四的逐行相加减是拿新得到的行去加减消元。

五:拆分行列式

把一个行列式拆成几个好算的行列式之和 特征:来个简单点的自己感受

9.

(此题和上面的方法一样,留给读者作练习)
上面的两题都是只拆了一行,但还有些题目需要拆多行

10.

上面的两题,利用拆分行列式,可以简便计算。而下面的第九题,则可以在拆分后, 利用行列式的性质:若两行成比例,行列式的值为0. 来化简行列式或直接求得行列式的值。
第十题 答案:
再来一题:

11.计算

,其中:

试试把
代入最后一列,然后用二项式展开,然后拆开。

六:直接按一行(列)展开:

12.

按最后一行展开,可得

七:按拉普拉斯公式,多行展开:

在算矩阵时,可挖洞后再算,以简化计算。

13.


八:加边法:

当每一行有较多相同元素时,可考虑按一行展开的反向操作,加多一行,然后用新加的行去减其他的行,来简化行列式

例:

=

=

(接下来就按照(1)那么做就完了)

第(5)题也可以加边法做

例:

=


九:加边法和范德蒙德行列式一起用:

例:

对比范德蒙德行列式就可以发现区别,为了使用范德蒙德行列式,我们必须在倒数第二行和最后一行插入次数为

的行。

我们在右边和

行和
行之间插入对应元素,得到如下行列式:

此时我们按最后一列展开后,得到

余子式就是

同时

完全展开式中
的系数为

的完全展开式等于
上式就是把范德蒙德行列式
的值的乘积形式中有含
的因子提出了累乘号外。

则可以看出

的系数为

方法十:归纳法

该方法多用于证明行列式的值等于某个式子,或对于已经知道结果的行列式使用。
同数学归纳法。先证明阶为
时成立,再从
成立推出
阶也成立。

比较经典的是这道:

读者可以记住他的答案是
,考试时用数学归纳法证明出来就好了。

这里小小证一下。

阶略。假设
阶时成立。

按最后一行展开得到
然后把假设的结论带进去,然后高中生都知道怎么做了。

方法十一:作出特征根得到递推法
特征:若
阶行列式满足不等式
则可用该法。(这个关系往往是选择一行展开后可得的)

先给出结论:

若行列式满足上述关系,则作特征方程

记根为

若判别式

则特征方程有两个不等的根,此时

若判别式

,则特征方程只有一根,此时

上述

均为待定系数,可先令
求得。

上面的公式是怎么来的:

首先:为什么要作特征方程
这其实就是递归数列的特征根法

我们已知

为了使其能一直递推下去,我们就需要得到一个形如这样的等式:

把他们移相以后,就可以得到:

然后就是韦达定理的事情了。后面的解释从略。

利用

写出

同样可以写出:

联立解出

即可。

方法就先写到这啦,如果有补充的小伙伴欢迎交流~

0eb5e88faaafe13924e81826bb268a03.png

谢谢观看,希望对各位有用~

码字不易,点个赞叭~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值