
本篇文章收录了丘维声《高等代数学习指导书》一书中,及笔者平常做过的觉得有经典意义的行列式计算题
(一):惯例从两道简单的开始热身:
(只需要利用定义就可以算出来)
1.
2.设
接下来正式进入方法大全

方法一:化上三角形行列式:
这是求行列式的最基础的方法,没什么特征好讲的
一般就是一列(行)乘上一个数加到某一列(行),使其转化为上(下)三角形行列式。
1.
提示:这题只需把从第二列开始的每一列提取一个(
),然后乘一个
加到第一列即可得到一个上三角行列式。
小小的示范一下:
先把第二列的
再乘以
对第一列后面的每一列都这么做,就可以得到上三角形行列式。
另:对于形如下图的行列式,都可以采用同样的方法算

方法二:连加法:
特征: 当你发现行列式每一行(列)的值加起来都相等且不等于0时,试试把他们其余行(列)全部加到第一行(列)去,然后再把这个和提出来,从而第一行(列)就全是1了,从而简化行列式。
3.
4.
方法三:滚动消去法:
特征:当你发现, 相邻的行(列)长得比较相似,很多项长得一样时。不妨试试滚动相减。即:最后一行(列)开始的每一行(列)都减去上一行(列)。
5.
6.
附加题:
这题稍微难点,先利用滚动消去
再用按一行展开。重复俩次就可以发现规律)
四:逐行(列)相加减法
该方法是将第一行(列)加(减)到第二行,获得的新的第二行再拿去加(减)第三行。
特征: 发现前(后)一行(列)中的元素如果去掉“某个元素”后,再和下一行(列)相加减,就能把下一行(列)的某些元素消去,而不带来新的元素。并且前一行(列)中的那个想要去掉的 “某个元素” 能用同样的方法事先先消掉。
当然值得注意的是:从最后一行开始和从第一行开始,结果往往会不一样,需要读者在做题的时候,选择好到底应该从哪开始。
7.
8.
需要提醒一下的是,这和方法三的滚动消去是有所不同的。滚动消去法是用未变动的行去加减相消,而方法四的逐行相加减是拿新得到的行去加减消元。
五:拆分行列式
把一个行列式拆成几个好算的行列式之和 特征:来个简单点的自己感受
例:
9.
上面的两题都是只拆了一行,但还有些题目需要拆多行
10.
上面的两题,利用拆分行列式,可以简便计算。而下面的第九题,则可以在拆分后, 利用行列式的性质:若两行成比例,行列式的值为0. 来化简行列式或直接求得行列式的值。
第十题 答案:![]()
再来一题:
11.计算
试试把代入最后一列,然后用二项式展开,然后拆开。
六:直接按一行(列)展开:
12.
按最后一行展开,可得![]()
七:按拉普拉斯公式,多行展开:
在算矩阵时,可挖洞后再算,以简化计算。
13.
八:加边法:
当每一行有较多相同元素时,可考虑按一行展开的反向操作,加多一行,然后用新加的行去减其他的行,来简化行列式
例:
=
=
(接下来就按照(1)那么做就完了)
第(5)题也可以加边法做
例:
=
九:加边法和范德蒙德行列式一起用:
例:
对比范德蒙德行列式就可以发现区别,为了使用范德蒙德行列式,我们必须在倒数第二行和最后一行插入次数为
我们在右边和
此时我们按最后一列展开后,得到
同时
上式就是把范德蒙德行列式的值的乘积形式中有含
的因子提出了累乘号外。
则可以看出
方法十:归纳法
该方法多用于证明行列式的值等于某个式子,或对于已经知道结果的行列式使用。
同数学归纳法。先证明阶为时成立,再从
成立推出
阶也成立。
比较经典的是这道:
读者可以记住他的答案是,考试时用数学归纳法证明出来就好了。
这里小小证一下。
把
特征:若阶行列式满足不等式
则可用该法。(这个关系往往是选择一行展开后可得的)
先给出结论:
若行列式满足上述关系,则作特征方程
记根为
若判别式
若判别式
上述
上面的公式是怎么来的:
这其实就是递归数列的特征根法
我们已知
为了使其能一直递推下去,我们就需要得到一个形如这样的等式:
把他们移相以后,就可以得到:
然后就是韦达定理的事情了。后面的解释从略。
利用
写出
同样可以写出:
联立解出
方法就先写到这啦,如果有补充的小伙伴欢迎交流~

谢谢观看,希望对各位有用~
码字不易,点个赞叭~