序
因为很多数学note写知乎上了,所以我也打算在知乎上做做关于毕设的数学方面的note(因为引用自己的文章比较方便。。。)
我做的毕设是实现在EC上的可以用于简单加密解密的系统(这里额外提一句,其实ECC在某种意义上是EC上的RSA加密算法)。之前一篇文章
Alepha E:杂记 数论、代数数论和椭圆曲线的一些算法zhuanlan.zhihu.com
主要是从算法的角度来写的,这回主要来说说数学方面的内容。
我的毕设大体上实现了三块内容:
- 有理点群的算法构造
- 有理点个数的计算
- 曲线的生成(通过给定有理点的个数)
有理点群的算法构造
这一块就对毕设中一些基本属性所用到的椭圆曲线的知识做一个概述。也就是说会大概对椭圆曲线做个介绍。
实际上,很多数学上的东西,只要经过代数化处理后,都是有实现编程的可能的。
在我这个毕设中,用到的加密曲线是Weierstrass方程下的椭圆曲线,一般情形是长这样子
在毕设中使用的时候,便用这个normal情形的曲线 [1]
这条曲线是怎么来的呢?大致上是Abel通过对椭圆积分求反函数导数,然后往复变函数论的范畴进一步研究所发现的。在Stein的复分析,这本书上对椭圆曲线的推导是从复分析的方法得来的(用
推论使之
![]()
其中,
对于Weierstrass椭圆函数,其定义域是复平面商去相应的格,
对于给定的格实际上等于给了两个线性无关的复数) ,然后用复平面商去后,是一个Riemann Surface。(
,分别找到这两点对应的邻域
,得到商映射
为同态。于是可以得到一个二元序偶作为局部坐标
这样,我们就得到了一个
上的一个复结构,其满足:之前的映射
解析,且对于任何开集
,函数
是解析的iff
在
是解析的。
(

本文探讨了椭圆曲线在加密系统中的应用,包括有理点群的算法构造、有理点个数的计算以及曲线生成的数学原理。介绍了Weierstrass方程下的椭圆曲线,并详细阐述了有理点群的加法定理,以及穷举法、Shanks-Mestre法和Schoof法在计算有理点个数时的应用。同时,讨论了椭圆曲线生成的穷举法和CM法,特别是CM法中通过Hilbert类域多项式确定j不变量的方法。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



