对于G的子群A,为什么我们称子群A对G的陪集个数[G:A]为A对G的指数呢?这种说法其实是非常直观形象的,在说明这点前,我们先引出循环群的定义。
(定义2.6.1)循环群。由一个元素反复运算生成的群
称为循环群,简记为
,
称为这个循环群的生成元。
由于循环群中任意元素都可以表为生成元的幂,所以有
(定理2.6.1)循环群都是Abel群。
证明:直接由群的结合律推出。
(定理2.6.2)循环群G中的任意元素都是G或G的子群A的生成元。
证明:设G的其中一个生成元为g,那么G中的所有元素都可以表示为
,设群的阶为n,若
,那么
也是G的生成元,若
,则有
,从而使得
为G的子群A且其阶为
,
,显然
也是A的生成元,且其g的次数最少,故我们称这个生成元为子群A对G的最小生成元,而其g的次数恰好为
,故而我们又称
为A对G的指数。然后定理也随着定义的解释证完了。
(定理2.6.3)循环群的任意子群也是循环群。
证明:这是显然的。
(定理2.6.4)设群
。若G是无限阶的,则
,若G是有限n阶的,则
,所以若两个循环群
,则
。
证明:利用群的同态,我们很容易建立
的一一对应,从而
。对于无限阶群
,虽然它的元素从来不重复,但由于它的阶是无限的且有唯一生成元1,所以我们仍然可以称它为循环群,尽管他并不“循环”。证毕。
作为上述定理的应用,我们可以确定非Abel群的最小阶数,首先有
(定理2.6.5)p(素数)阶群G均是Abel群,并且同构于
。
证明:根据定理2.4.2,对于每个群元素g都有
,由于|G|为素数,所以要么|g|=1,要么|g|=p,而因为群的1阶元素(幺元)是唯一的,于是
,这显然是循环群,则由定理2.6.1即知G为Abel群,由定理2.6.4即知
。证毕。
由上述定理可知,2,3,5阶群均是Abel群,而1元群(1阶)显然是Abel群,然后我们再来考虑4阶群,由定理2.4.2可知,4阶群元素的阶只可能是1,2,4,我们先考虑拥有4阶元素的4阶群,显然这个群只可能是
![]()
,它有2个4阶元素
![]()
和
![]()
,以及1个2阶元素
![]()
,和1个1阶元素(幺元1),它是一个Abel群。然后只拥有1阶元素的4阶群是不存在的,因为群幺元只允许拥有一个,只拥有1阶元素的4阶群意味着有4个幺元,这是不可能的。最后考虑只拥有幺元和2阶元素的4阶群,在此之前我们先证一个定理。
(定理2.6.6)若群G中每一个非幺元素的阶均为2,则G是Abel群。
证明:设
,
,
。于是
。Q.E.D
从而由上述定理我们得知,没有4阶元素的4阶群是Abel群。目前,我们已经对4阶群做了完全的分类了,在同构意义下,只存在2个4阶群,它们分别是:
有4阶元素的4阶群
没有4阶元素的4阶群
其中
![]()
又被称为Klein四元群。
我们从上述讨论中得知4阶群都是Abel群,那么最小阶非Abel群极有可能是6阶群,而事实上,我们的确可以举出这个具体的例子,在此之前,我们先认识一下什么是置换。
(定义2.6.2)置换。设X是一个有限集,其元素个数为n=|X|,
为X中的元素,则
。记
是一个映射,它是自然数
的任一排列,我们记这个排列的第i项为
,则X中的元素经过
排列后可记为
,从而
就是X到X自身的双射。而由排列数可知,这样的X到X自身的双射
共有n!个,我们称这样的映射为n元置换。设由这n!个置换构成的集合为置换集
,显然由
中元素组成的复合映射也是n元置换,对于任意
,有
,根据第一归纳法我们得知
,从而置换集
是一个代数结构。我们可以使用一个二行记号来表示置换
:
意义为原排列的第1个元素用第
个元素替换...第i个元素用第
个元素替换,直到对所有的n个元素都操作完毕。由于
是双射,不同的元素i、j不会映射到同一个元素当中,即
,故经过
映射后的排列必定不会出现重复的元素,那么用这种二行记号表示的
必为
中的元素,考虑恒有
的映射
显然有
,从而
为代数结构
的幺元。对于映射
我们将这个记号上下翻转,得到
然后对齐(下方元素跟随上方元素移动)整理为正顺序
显然
,考虑映射
,首先X中的元素i经过
映射后变为
,而
的映射则把排列中第
个元素替换为第i个元素,而经过
的排列的第i个元素恰好就是
,那么与
复合后恰好就是把第
个元素替换为第
个元素,故
就是恒等映射
,类似的也可以推出
,从而
就是
的逆元。
前面的讨论暗示着我们
![]()
极有可能是群,让它成为群则只需要证明它的运算符合结合律即可,但是我们仍未能从已有的条件推出这个性质,对此,我们需要引入轮换(cycle)的概念来使得
![]()
提升为群。对置换使用二行记号表示除了显得麻烦以外,还存在一个主要问题,我们可以把一个置换分解成更简单的置换吗?这样的初等问题,二行记号没能给予我们回答,而接下来要介绍的轮换将弥补这个缺陷。
(定义2.6.3)轮换。设
,
,若
,则称
固定i,若
,则称
移动i。设
,若
且
固定除
以外的其他元素,则称
为r-轮换。一个2-轮换交换
和
并固定其他元素,因此2-轮换也称为对换。1-轮换是恒等映射,因为它固定每一个i,因此所有的1-轮换都是相等的。现在我们引入一个新的记号,我们把一个r-轮换
记为
例如一个置换
可记为
,不过还有一个问题,并不是所有的置换都可以记为r-轮换,例如
如果尝试给出一个r-轮换,那么它可能是(12)或者(34)这两个2-轮换,而这两个轮换都不能完全表示出
,它们都丢失了一些信息,但是好消息是,这些在同一置换中求得的轮换,它们包含的元素是两两不交的。定义轮换间的运算“并列”,那么这些不相交的r-轮换对集合的作用是相互独立的,则“并列”运算符在不交的r-轮换中符合结合律和交换律,在上述例子中即为(12)(34)=(34)(12),故在一个置换中,我们总能将其分解为有限个不交r-轮换的乘积。
现在我们给出一个算法,来把一个置换分解为一些不交r-轮换的乘积。例如,取
从写“(1”开始,因为
,所以写“(16”,又因为
,所以可以关闭括弧,
以“(16)”开始,然后还没有出现的最小数字是2,所以我们写“(16)(2”,因为
,
,所以可以关闭括弧“(16)(24)”,剩下的没有出现的最小数字是3,由于
,
,
,
,这就给出了4-轮换(3789),最后
。故我们断言
,对于任意置换
,由于置换所包含的元素总是有限的,故我们总可以通过不断搜索尚未在轮换乘积中出现的最小数来遍历整个置换序列(最小整数公理),则我们总能在有限的时间内寻找到
的所有不交r-轮换,来通过并列乘积来完整表示
。
把置换分解为轮换的乘积是十分方便的,对于序列
![]()
,考虑置换
若X先与
![]()
作用,后与
![]()
作用,则X中的i经过
![]()
作用先变为
![]()
,然后经过
![]()
作用替换为当前序列的第
![]()
项,而此时当前序列的第
![]()
项为
![]()
,从而有
![]()
,对于
![]()
中的所有置换
![]()
,我们考虑复合作用
![]()
,即X先与
![]()
作用,再与
![]()
。。。最后与
![]()
作用。已知
![]()
之间的任意有限次不同的复合作用仍属于
![]()
,故可以将这个复合作用看做一次
![]()
作用,即
![]()
,而对于两次相邻的作用有
![]()
,故根据第一归纳法可得
为了简化表示,分解为轮换表示的置换
![]()
也可以仿照轮换记号的乘(并列)运算,把一些括号省去,表为
![]()
,此时,
![]()
之间的序列可能会出现同一元素(即序列相交),由于
![]()
是封闭的,故这个复合作用也一定可以化简为一些不交轮换的并列积,下面给出一个具体算法。考虑化为轮换表示的置换
其并列运算
![]()
,先考虑1的变换:
![]()
,所以
![]()
,则我们从“(14”开始,然后
![]()
,所以“(14)”为第一个轮换,然后
![]()
,则“(14)(2)”,
![]()
,“(14)(2)(35”,
![]()
,“(14)(35)”,故最简表示为
![]()
。
注意到每个元素的变换譬如
![]()
中的箭号
![]()
是互不干涉的,即有
这分别对应着
即
这表明了置换间的并列运算是符合结合律的,所以
![]()
是群,且其阶为n!
那么回到最初的问题,非Abel群的最小阶是多少?现在我们就可以立马给出答案。考虑群
,它的阶为6,它有6个元素,为
,对于元素(12)和(13)有(12)(13)=(132),(13)(12)=(123),故
,即
不符合交换律,从而
不是Abel群,则非Abel群的最小阶为6。Q.E.D
非Abel群的共轭元素通常不止一个,以刚接触的置换群
![]()
为例,所有拥有相同的轮换表示结构的置换必定共轭,因为有
(定理2.6.7)设
,对所有的i,若
,则
证明:
设
的不交轮换表示为
,则
显然
和
有相同的轮换结构。而与
有相同结构的置换也必定能表成
的形式,若要求
,则只需把这两个置换对齐写成一个二行记号的形式
,那么这个二行记号所表示的置换就是
(通常并不唯一)了。Q.E.D
上述定理的证明告诉我们群
中共轭的元素必有相同的轮换结构。但是反过来未必成立
,有反例:考虑群
![]()
,其中
![]()
和
![]()
的轮换结构相同,但是在
![]()
中却不共轭,
这主要体现在通过二行记号求出的
不在
中
,设
![]()
和
![]()
,则
![]()
或
![]()
,显然
![]()
。
除了把置换分解为不交轮换的乘积,还有另一种有用的分解。
(定理2.6.8)若
,则每个
是一些对换的乘积,而(li)为
的生成元系。其中l可以是序列1,...,n中的任何元素。
证明:对于k-轮换
显然可以分解为
再次强调置换运算对集合作用顺序是按照轮换分解从左到右作用,但是需要注意的是,集合中的元素的结合变换却是按照轮换分解从右到左结合,这点在先前的讨论已经讲的很清楚了。
而
中的任一对换(ij)可分解为(li)(lj)(li)或(lj)(li)(lj)。定义2.6.3告诉我们任何置换都可以分解为不交轮换的积,而每个轮换又能分解为(li)对换的乘积,则综上所述,所有的置换都能分解为(li)对换的乘积。证毕。
(定理2.6.9)置换分解为对换乘积的次数的奇偶性是相同的。同时我们称次数为奇(偶)的置换为奇(偶)置换。
证明:从定理2.6.8可知任何置换都能分解为有限个对换的乘积,其中任意对换(ij)又能分解为另外3个不同于(ij)的对换的乘积(li)(lj)(li)或(lj)(li)(lj),所以这个对换的乘积并不是唯一的,但是1个对换一次只能变为3个,1和3都是奇数,所以置换无论以何种方式分解,它的对换次数的奇偶性总是不变的。证毕。
对于文字集{偶,奇}引入加法运算+,显然有
从而代数结构
![]()
是Abel群且与bool代数群
![]()
和群
![]()
同构。其中
![]()
是他们的同构映射。所以,我们不妨引出一下定义。
(定义2.6.4)设
且
是不交轮换的完全分解。其中
为一个轮换,且
包含所有长度为1的轮换,即分解中没有出现的元素r要独立的记作1-轮换(r)出现在
分解式中。则映射sgn定义为
。
(定理2.6.10)若
为奇置换,则
,若为偶,则
,且
,则有
,即sgn为
的一个同态。
证明:对于
完全分解中的每一节不交轮换,根据定理2.6.8,都有
,即有k-1个对换相乘,且若k-1为奇(偶)数,此置换就是奇(偶)置换。而根据定义2.6.4,
的完全分解式中,每一个1—n的元素必须出现1次,而所有轮换组成了1—n的无交并,即
,又因为每一节轮换都带来
个对换的相乘,所以
就能分解成n-t个对换的相乘,而每个对换都是奇的,从而
。令
的轮换节数分别为
,则未化简的
的轮换节数为
,从而
Q.E.D
(定理2.6.11)
上的全体偶置换构成
的一个子群,称这个子群为交错群,记为
。
证明:设
,根据定理2.6.10,
,从而
,所以任意形如
的置换皆为偶置换,所以
是
子群。证毕。
(定理2.6.12)若
,则每个
是一些3-轮换的乘积,即全体3-轮换形成
的生成元系。
证明:若
为偶置换,则
是偶数个对换之积。从而只需证任意两个对换的积可用3-轮换表示即可。对于
,如果
,则
,如果
,则
,如果
,则
。证毕。
下面介绍一个sgn函数的经典应用。
(例2.1)热门电视综艺节目《最强大脑》中有一个有趣的智力游戏——数字华容道。这个游戏的规则如下:
在
的方格当中,数字1到
随机单独的填进除最后一格的每一个格子当中,且令最后一个格子,即第
个格为空格,我们称此为初始状态。可对其进行的操作是:与空白上下左右相邻的格子可以平移至这个空白,对应的,经过平移后的格子变为空白。而win的条件是:每一个格子的数字都从左到右,从上到下地按顺序排列,最后一个格子留作空白。这就是n阶数字华容道的规则。
为了分析这个游戏,我们注意到给定的方格实际上是一个置换
![]()
,如图2.1
这是n=4的一种初始状态,这个方格写成置换就是
而每一次平移就是一个特殊的对换,即移动
![]()
的对换。因此为了赢得这个游戏,我们需要一些特殊的对换
![]()
使得
![]()
。下面的讨论能使我们更进一步分析n阶数字华容道。
(定理2.6.13)若
且字母
是互不相同的,则
和
证明:第一个等式的左边有
得到
,对于第二个等式,两边左乘(ab)即得。
Q.E.D
在4阶数字华容道中,若
![]()
是初始状态,则游戏可以赢当且仅当
![]()
是一个偶置换。关于这个事实的证明,详细可参考Mccoy和Janusz编写的《Introduction to Modern Algebra》,证明的核心正是用到定理2.6.13。但是对于不可以赢的一个充分条件,还是有一个十分简单的证明的。空格在16处开始,每一次平移都把空格向下,向上,向左或向右移动,设上,下,左,右的次数分别为u,d,l,r,那么根据游戏规则,一定有相同次数的上移和下移,以及相同次数的左移和右移,即u=d,l=r,因此总移动次数m一定是偶数:m=2u+2l,所以
![]()
必须是偶置换。有了这个定理,我们检查图2.1
![]()
的完全分解
则
![]()
,所以
![]()
是奇置换,因此游戏若从图2.1开始则不可能赢。
现在开始介绍交错群
![]()
的一般性质。
(定理2.6.14)
,其中
证明:考虑
在
中的左陪集
,显然当
为偶置换时
,所以我们只需考虑
为奇置换的情形,假设陪集个数
,则除陪集
外,其他陪集
的代表元
必为奇置换,则根据左陪集的定义,若
,则
位于同一个左陪集,由于
皆为奇置换,则势必有
,若设
为不同陪集的代表元,则矛盾,故必
。证毕。
(定理2.6.15)
中所有的3-轮换共轭。
证明:我们可以通过中心化子的定义和定理2.4.6来计算3-轮换在
中的共轭元素的数量。考虑在
中每一个可与3-轮换(ijk)交换的元素,即(ijk)在
的中心化子
,我们得知以(ijk)生成的循环群元素只有{(1),(ijk)(ikj)}3个元素,而根据定理2.6.1可知循环群的元素都是可交换的显然它们都是偶置换,属于
。再由轮换定义可知不交轮换之间的运算都是可交换的,不包含i,j,k的置换总共有(n-3)!个,而根据定理2.6.14知其中的偶置换有
个,那么(ijk)的中心化子是由这两组基产生的,故而
,那么
中与(ijk)共轭的元素有
个,根据排列数和轮换的定义,在
中与(ijk)有相同结构的轮换有
个,恰好等于
,所以
中的所有3-轮换与(ijk)共轭。
Q.E.D
现在说明为何
![]()
不满足定理2.6.15,因为从式子
![]()
中可以看出,
![]()
算出来甚至不是整数!而内在原因是
![]()
是Abel群,这意味着(123)和(132)在
![]()
中不共轭。而对于
![]()
,它并不是Abel群,我们则需要另外说明它不满足定理2.6.15。对于3-轮换(123),假定它与(132)共轭,那么根据定理2.6.7,它的共轭作用置换
![]()
符合
从而满足
![]()
的形式只能是
![]()
,由于
![]()
是奇的,则
![]()
就要是奇的,而在
![]()
中与(123)不相交的奇置换
![]()
不存在,故(123)在
![]()
中不与(132)共轭。
(定理2.6.16)
是单群。
证明:根据单群定义2.4.11,我们将要证明的是,若
,且
,则
。若H有3-轮换,则根据正规子群定义2.4.10及定理2.6.15可知H应包含所有的3-轮换,而根据定理2.6.12,此时
。因此我们只需证明H含有3-轮换。
因为
,所以它含有某个偶置换
。我们可以假设
、
或
。
若
,则证毕。
若
,用
共轭
得到
而
。证毕。
若
,设
是
中任意3-轮换,则
,所以
,而
是3-轮换,所以H含有2个3-轮换的积。所以我们可以选一个
使得这2个3-轮换的积仍是3-轮换选
,则
,那么
。从而
,
的正规子群只有{(1)}和
本身,所以
是单群。
Q.E.D
不用花很多功夫我们就能证明,对每个
![]()
,
![]()
都是单群。对于
![]()
,它显然是单群。对于
![]()
,它的元素有
其中它有正规子群
![]()
,这就是前面所提到的Klein四元群。所以
![]()
不是单群。
(定理2.6.17)
是单群。
证明:设
是
正规子群,我们必须证明
。假设存在某个
满足
并固定某个i,其中
。定义
,容易验证
且
,注意到
,所以
。由第二同构定理得:
,则
。由于
,从而F的正规子群只有{(1)}和F,所以
即
。于是H含有3-轮换,根据正规子群定义以及定理2.6.15和定理2.6.12即知
。现在假设不存在
满足
并固定某个i,
。此时若我们考虑
中置换的轮换结构,则任意这样的
一定有类似(12)(3456)或(123)(456)的结构,第一种情形中,
是一个非平凡置换并固定了1和2,矛盾。在第二种情形中,H含有
,其中
,容易验证
固定6,矛盾。因此,这样的正规子群不存在,所以
是单群。
Q.E.D
(定理2.6.18)对所有
,
都是单群。
证明:若
且
,则我们要证
,即只需证H含有3-轮换。若
是非平凡的,则存在某个i被
移动,不妨设
。选取3-轮换
满足固定i和移动j,则
和
不交换:
。于是
是H的非平凡元素且
是2个3-轮换的积,因而
最多移动6个符号,不妨设为
。定义
容易验证
且
,显然
,因此
且
。但是F是单群,所以
,即
。因此H有3-轮换,所以
。
Q.E.D
在今后的章节中我们将会看到,定理2.6.18成为解释为什么二次公式没有推广到给出5次或更高次多项式的根的基本原因。
(定理2.6.19)当
时,
是
唯一非平凡正规子群。
证明:首先有
,这是显然的,因为所有的偶置换的共轭也是偶置换,即
,
,则
。同时,不存在正规子群
且
,因为此时
,而
是单群,矛盾。若N包含奇置换,则
并且根据第二同构定理和乘积公式得:
已知
只能为1或
,当
时,
,由于
,所以
或
。当
时,
,由于
且
,所以
或
易证
时,
不可能有2阶正规子群,而N又要有奇置换,故
,所以
是
唯一非平凡正规子群。
Q.E.D
弱智的习题:
1.证明:若gh=hg,g和h的阶分别为m和n,且gcd(m,n)=1,则gh的阶为mn。
2.请用循环群证明费马小定理。
不弱智的习题:
1.一辆大巴上有n个座位,我们对每个座位从1到n编号。现在车票座位编号为1到n的乘客依次上车。编号为1的乘客比较皮,上车之后是随机(等概率地)坐座位的。编号为2的乘客上车之后,他先看有没有人坐在2号位上,如果有,那他就在剩下的位子里随机(等概率地)挑选一个,如果没有人坐,他就坐在2号位上。3号也是一样,如果前面有人已经坐了3号位了,他就在剩下的位子上随便挑一个坐,反之则坐自己位子,以此类推。那么问题就是,第n个人坐在第n号位子上的概率应该是多少?(提示:考虑轮换定义,这道题你能口算,答案也是相当的简单)
2.百囚徒挑战。监狱决定给关押的100名囚徒一次特赦的机会,条件是囚徒通过一项挑战。所有囚徒被编号为1-100,对应他们编号的100个号码牌被打乱顺序放在了100个抽屉里。每个囚徒需要从所有抽屉里打开至多半数(50个),并从中找出对应自己编号的号码牌。如果找到了则该名囚徒的任务成功。所有囚徒会依次单独进入挑战室完成任务,并且从第一个囚徒进入挑战室开始,直到所有囚徒结束挑战为止囚徒之间任何形式的交流都是禁止的。当一名囚徒完成任务后,挑战室会被恢复为他进入之前的样子(号码牌当然也放回原来的抽屉里)。在这100名囚徒中,任意一名囚徒的失败都会导致整个挑战失败,只有当所有囚徒全部成功完成任务时,他们才会统一得到特赦的机会。最后,在开始挑战之前,监狱给了所有囚徒一个月时间商量对策。
作者:鍵山小鞠
链接:https://www.zhihu.com/question/330408241/answer/772662477
这段复制粘贴太长了,不留原作信息的话那我就太恶心了,我还要点脸(
于是由上述阅读材料产生了如下问题:
(1)请找出囚徒的最优策略,不必证明。(提示:直接给你答案算了。。。。就是用轮换,至于为什么是最优策略,证明我也不会,想知道的话你可以去问问材料的原作者)
(2)请计算出当囚犯人数趋于无限时被特赦的概率。(提示:答案就在链接里,这就是我为什么留原作信息的原因桀桀桀)
3.某教授发明了一个可以让两个人灵魂互换的机器,然后把好多人灵魂互换了,又希望把各自的身体换回来。但这个机器有一个限制:已经互换过灵魂的两人不能再次进行灵魂互换。如果没有这个限制的话,解决这个问题十分简单:把所有的互换按照倒序重复一遍即可。但因为有了这个限制,如何通过加入新的人,把大家的灵魂换回去,变成了一个不那么简单的问题。问题就是:请问最少需要加入多少人才能保证所有人的灵魂都能换回去?并构造证明出一种交换方案。
提示:设躯体序列为
![]()
,灵魂序列为
![]()
,每个灵魂
![]()
对应的正确躯体为
![]()
,于是灵魂互换的所有人就是一个置换
![]()
,我们可以把每具躯体装载的灵魂表为一个二行记号:
其中躯体
![]()
装载的灵魂为
![]()
。那么
![]()
写成不交轮换的积中任一节轮换都能表示为
![]()
,这节轮换表示的是一组躯体与装载灵魂的对应:
![]()
现在给出提示的主体部分:
不过这个提示就相当于直接把答案说出来了。。。。。。其实这道题就是Futurama这部动画(维基上的中文名是飞出个未来)的第六季第十集的内容,而且作者还直接在这一整集22分钟的主流动画中给出了这道题的证明。嗯,是的,在动画内给出了证明。。。并且那一集动画还因此受到了好评(虽然收视率并不高?)。所以这个结果又叫Futurama Theorem