pg9.5增加的brin索引,存储了被索引字段在块级别的边界值(最大值、最小值)以及其他统计信息。
BRIN索引的扫描原理很简单,扫描BRIN的元数据,根据元数据和用户输入的条件进行比较,过滤不符合条件的HEAP PAGE,只扫描需要扫描的HEAP PAGE。
所以brin索引仅仅适合存储与值线性相关性很好的列。
例子:
我们创建两张表,一张表插入线性相关很好的数据,另一张表插入离散的数据来测试brin索引的性能。
–建表插入数据:
bill=# create table t_brin1(id int);
CREATE TABLE
bill=# create table t_brin2(id int);
CREATE TABLE
bill=# insert into t_brin1 select random()*1000000 from generate_series(1,10000000);
INSERT 0 10000000
bill=# insert into t_brin2 select generate_series(1,10000000);
INSERT 0 10000000
–在两张表上都创建brin索引
bill=# create index idx_t_brin1 on t_brin1 using brin(id);
CREATE INDEX
bill=# create index idx_t_brin2 on t_brin2 using brin(id);
CREATE INDEX
–通过pg_stats表查看两张表索引列的线性相关性
可以发现t_brin1表中数据比较离散,而t_brin2中数据线性相关性很好。
bill=# select correlation from pg_stats where tablename='t_brin1';
correlation
---------------
-0.0061385944
(1 row)
bill=# select correlation from pg_stats where tablename='t_brin2';
correlation
-------------
1
(1 row)
–测试性能
t_brin1表:
bill=# explain (analyze ,verbose,timing,costs,buffers) select * from t_brin1 where id between 1 and 100000;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on bill.t_brin1 (cost=262.18..194509.84 rows