复化梯形公式和复化辛普森公式matlab_科学计算第五讲(Newton-Cotes公式与复化公式及其误差估计,逐次分半与加速收敛)...

本文介绍了数值积分中的Newton-Cotes公式,包括梯形和抛物线(辛普森)求积公式,详细讨论了复化梯形和复化抛物线公式及其误差估计。同时,阐述了逐次分半法在梯形和抛物线公式中的应用,并提及了加速收敛技巧——Romberg积分。
摘要由CSDN通过智能技术生成

第五章、数值积分

5.1Newton-Cotes公式

目标:定积分

难点

原函数不好求

思路

,其中
是插值多项式

5.1.1梯形求积公式

使用

两个点的插值多项式.

cfa9bf634eb39c8b8177f3b324a0a704.png
用梯形面积近似积分

5.1.2抛物线形求积公式(Simpson公式)

使用

三个点的插值多项式.

4c860327ff3ffd3bcf9e5c9c54fd423d.png
用二次抛物线的积分近似

5.1.3Newton-Cotes公式

等分为
个区间,使用
个点.

其分点为

插值多项式为

用插值多项式代替被积函数得到

这里的

,它是拉格朗日插值的基函数在区间
上的积分,作变量替换
,这个积分等于

这里

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值