python nextpow2_谱减法语音降噪的Python实现

这是一个使用Python实现谱减法进行语音降噪的示例,利用nextpow2函数处理数据,并结合汉明窗、FFT和VAD检测进行噪声估计和信号重构。

转载出处:https://blog.csdn.net/iTaacy/article/details/60141849

效果:

谱减法语音降噪的Python实现:

#!/usr/bin/env python

import numpy as np

import wave

import nextpow2

import math

# 打开WAV文档

f = wave.open("input_file.wav")

# 读取格式信息

# (nchannels, sampwidth, framerate, nframes, comptype, compname)

params = f.getparams()

nchannels, sampwidth, framerate, nframes = params[:4]

fs = framerate

# 读取波形数据

str_data = f.readframes(nframes)

f.close()

# 将波形数据转换为数组

x = np.fromstring(str_data, dtype=np.short)

# 计算参数

len_ = 20 * fs // 1000 # 样本中帧的大小

PERC = 50 # 窗口重叠占帧的百分比

len1 = len_ * PERC // 100 # 重叠窗口

len2 = len_ - len1 # 非重叠窗口

# 设置默认参数

Thres = 3

Expnt = 2.0

beta = 0.002

G = 0.9

# 初始化汉明窗

win = np.ham

### 含噪语音增强谱减法 MATLAB 实现 以下是基于谱减法 (Spectral Subtraction) 的含噪语音增强 MATLAB 实现代码示例。该方法通过对频域中的噪声功率谱估计并将其从混合信号的频谱中减去来达到去噪效果。 #### MATLAB 代码实现 ```matlab function [enhanced_signal] = spectral_subtraction(noisy_signal, fs, frame_length_ms, overlap_ratio, alpha) % 参数说明: % noisy_signal: 输入含噪语音信号 % fs: 采样频率 % frame_length_ms: 帧长(毫秒) % overlap_ratio: 帧间重叠比例 % alpha: 谱减因子 % 将帧长转换为样本数 frame_length_samples = round(frame_length_ms * fs / 1000); % 计算窗口函数和步长 window = hamming(frame_length_samples)'; step_size = floor((1 - overlap_ratio) * frame_length_samples); % 初始化变量 num_frames = floor((length(noisy_signal) - frame_length_samples) / step_size) + 1; enhanced_spectrogram = zeros(num_frames, frame_length_samples); % FFT 长度设置为下一幂次方 fft_len = nextpow2(frame_length_samples); % 初始噪声功率谱估计 noise_power_spectrum = abs(fft(window' .* noisy_signal(1:frame_length_samples), fft_len)).^2; % 循环处理每一帧数据 for i = 1:num_frames start_idx = (i - 1) * step_size + 1; end_idx = min(start_idx + frame_length_samples - 1, length(noisy_signal)); % 提取当前帧 current_frame = noisy_signal(start_idx:end_idx); % 补零到固定长度 padded_frame = [current_frame; zeros(frame_length_samples - length(current_frame))]; % 加窗操作 windowed_frame = padded_frame .* window'; % 进行快速傅里叶变换 spectrum = fft(windowed_frame, fft_len); % 幅值平方得到功率谱 power_spectrum = abs(spectrum).^2; % 如果是初始几帧,则更新噪声功率谱估计 if i <= 5 noise_power_spectrum = mean(power_spectrum(1:i,:), [], 1); end % 执行谱减法 reduced_spectrum = sqrt(max(abs(spectrum).^2 - alpha * noise_power_spectrum', 0)); % 反向傅里叶变换恢复时间域信号 enhanced_time_domain = real(ifft(reduced_spectrum .* exp(j*angle(spectrum)))); % 存储增强后的频谱 enhanced_spectrogram(i,:) = enhanced_time_domain(1:frame_length_samples); end % 使用overlap-add重构信号 reconstructed_signal = []; for i = 1:num_frames start_idx = (i - 1) * step_size + 1; end_idx = min(start_idx + frame_length_samples - 1, length(noisy_signal)); reconstructed_signal(end_idx:start_idx:-1) = ... reconstructed_signal(end_idx:start_idx:-1) + enhanced_spectrogram(i,:); end % 输出增强后的信号 enhanced_signal = reconstructed_signal(1:length(noisy_signal))'; end ``` 上述代码实现了基本的谱减法框架,其中包含了以下几个核心步骤: - **加窗分帧**: 对输入信号按照指定帧长和重叠率进行分割,并施加汉明窗[^1]。 - **FFT 和 IFFT**: 对每帧信号执行快速傅里叶变换 (FFT),计算其幅值谱;随后利用反向傅里叶变换 (IFFT) 恢复时域信号[^2]。 - **噪声功率谱估计**: 在前若干帧假设只有噪声存在的情况下估算噪声功率谱[^3]。 - **谱减运算**: 减少由噪声引起的干扰成分,保留纯净语音的部分。 此代码允许用户调整多个参数以适应不同场景下的需求,例如改变 `alpha` 来控制谱减强度或者修改帧长与重叠比率优化性能表现。 #### 注意事项 为了获得更好的结果,在实际应用过程中可能还需要考虑一些改进措施,比如引入平滑技术减少音乐噪音效应等问题的发生概率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值