Copula函数通过Sklar定理将联合分布函数和边缘分布函数结合起来由于它允许各新生量服从不同的分布假定,故Copula 函数能够有效刻画变量间的非线性尾部的相依关系。1940年,Hoeffding的研究涉及到了刻画边缘分布于正规化和函数的关系,其中涉及刻画边缘分布的函数是Copula 函数的雏形,为Copula 函数理论的产生奠定了基础;1951年,Frechet研究了二元的边缘分布函数与联合分布函数的关系;1956,Feron研究了三维的情况;1959,Sklar提出了将边缘分布与联合分布联系一起的Copula函数(Sklar定理);1974,Schweizer,Wolff 将Copula 函数应用在随机变量间相关结构和程度的研究上;1978,Galambos,Deheuvels研究了n维情况以及极值Copula;1986研究了具有奇异部分的Copula;随着计算机的发展Copula 函数才有了非常巨大的应用价值,因此,Copula函数虽然有70年的历史却在近20间迅速。
参考文献:
马薇《计量经济学 理论与应用》
Jaworski《Copula Theory and Its Applications》
Kurowicka《DEPENDENCE MODELING—Vine Copula Handbook》
Claudia Czado《Analyzing Dependent Data with Vine Copulas—A Practical Guide With R》
Hofert《Elements of Copula Modeling with R》
杨坤《基于R_vine copula的原油市场极端风险动态测度研究》
张卓群《半参数C_Vine Copula模型理论及其金融风险结构测度研究》
原文链接(点击下方阅读全文也可查看原文):
https://zhuanlan.zhihu.com/p/91089930
END
排版 | Aurora
文章 | 知乎(侵删)
图文 | 不可商用