python的代码实现:
#-*-coding:utf-8-*-
importnumpy as npdefMaxMinNormalization(x,Max,Min):
x= (x - Min) / (Max -Min);returnx;
a= np.array([[1,2,3],[4,5,6]])print(MaxMinNormalization(a,3,0))
二 Z-score标准化:
这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。
经过处理的数据符合标准正态分布,即均值为0,标准差为1,这里的关键在于复合标准正态分布,个人认为在一定程度上改变了特征的分布,关于使用经验上欢迎讨论,转化函数为:
这里一样,mu(即均值)用np.average(),sigma(即标准差)用np.std()即可.
python的源码实现:
defZ_ScoreNormalization(x,mu,sigma):
x= (x - mu) /sigma;returnx;
b= np.array([[1,2,3],[4,5,6]])print(Z_ScoreNormalization(b,b.mean(),b.std()))
三 Sigmoid函数
Sigmoid函数是一个具有S形曲线的函数,是良好的阈值函数,在(0, 0.5)处中心对称,在(0, 0.5)附近有比较大的斜率而当数据趋向于正无穷和负无穷的时候,映射出来的值就会无限趋向于1和0.
个人非常喜欢的“归一化方法”,之所以打引号是因为我觉得Sigmoid函数在阈值分割上也有很不错的表现,根据公式的改变,就可以改变分割阈值,这里作为归一化方法,我们只考虑(0, 0.5)作为分割阈值的点的情况:
python 源码:
defsigmoid(X,useStatus):ifuseStatus:#return 1.0 / (1 + np.exp(-float(X)))
return 1.0 / (1 + np.exp(-X))else:returnfloat(X)
c= np.array([[1,2,3],[4,5,6]])print(sigmoid(c,1))
参考文档: