python中tree 100 6_Python neighbors.BallTree方法代碼示例

本文详细介绍了Python中sklearn.neighbors模块的BallTree方法,包括其用法、参数设置和实际应用案例。通过19个代码示例展示了如何使用BallTree进行数据查询和操作,涉及距离计算、数据结构构建等多个场景。
摘要由CSDN通过智能技术生成

本文整理匯總了Python中sklearn.neighbors.BallTree方法的典型用法代碼示例。如果您正苦於以下問題:Python neighbors.BallTree方法的具體用法?Python neighbors.BallTree怎麽用?Python neighbors.BallTree使用的例子?那麽恭喜您, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在模塊sklearn.neighbors的用法示例。

在下文中一共展示了neighbors.BallTree方法的19個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於我們的係統推薦出更棒的Python代碼示例。

示例1: avgdigamma

​點讚 6

# 需要導入模塊: from sklearn import neighbors [as 別名]

# 或者: from sklearn.neighbors import BallTree [as 別名]

def avgdigamma(data, dvec, leaf_size=16):

"""Convenience function for finding expectation value of given

some number of neighbors in some radius in a marginal space.

Parameters

----------

points : numpy.ndarray

dvec : array_like (n_points,)

Returns

-------

avgdigamma : float

expectation value of

"""

tree = BallTree(data, leaf_size=leaf_size, p=float('inf'))

n_points = tree.query_radius(data, dvec - EPS, count_only=True)

return digamma(n_points).mean()

開發者ID:msmbuilder,項目名稱:mdentropy,代碼行數:20,

示例2: test_unsupervised_inputs

​點讚 6

# 需要導入模塊: from sklearn import neighbors [as 別名]

# 或者: from sklearn.neighbors import BallTree [as 別名]

def test_unsupervised_inputs():

# test the types of valid input into NearestNeighbors

X = rng.random_sample((10, 3))

nbrs_fid = neighbors.NearestNeighbors(n_neighbors=1)

nbrs_fid.fit(X)

dist1, ind1 = nbrs_fid.kneighbors(X)

nbrs = neighbors.NearestNeighbors(n_neighbors=1)

for input in (nbrs_fid, neighbors.BallTree(X), neighbors.KDTree(X)):

nbrs.fit(input)

dist2, ind2 = nbrs.kneighbors(X)

assert_array_almost_equal(dist1, dist2)

assert_array_almost_equal(ind1, ind2)

開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,

示例3: test_haversine

​點讚 6

# 需要導入模塊: from sklearn import neighbors [as 別名]

# 或者: from sklearn.neighbors import BallTree [as 別名]

def test_haversine():

tree = BallTree(spatial_data[:, :2], metric="haversine")

dist_matrix, _ = tree.query(spatial_data[:, :2], k=spatial_data.shape[0])

test_matrix = np.array(

[

[

dist.haversine(spatial_data[i, :2], spatial_data[j, :2])

for j in range(spatial_data.shape[0])

]

for i in range(spatial_data.shape[0])

]

)

test_matrix.sort(axis=1)

assert_array_almost_equal(

test_matrix,

dist_matrix,

err_msg="Distances don't match " "for metric haversine",

)

開發者ID:lmcinnes,項目名稱:pynndescent,代碼行數:20,

示例4: test_haversine

​點讚 6

# 需要導入模塊: from sklearn import neighbors [as 別名]

# 或者: from sklearn.neighbors import BallTree [as 別名]

def test_haversine(spatial_data):

tree = BallTree(spatial_data[:, :2], metric="haversine")

dist_matrix, _ = tree.query(spatial_data[:, :2], k=spatial_data.shape[0])

test_matrix = np.array(

[

[

dist.haversine(spatial_data[i, :2], spatial_data[j, :2])

for j in range(spatial_data.shape[0])

]

for i in range(spatial_data.shape[0])

]

)

test_matrix.sort(axis=1)

assert_array_almost_equal(

test_matrix,

dist_matrix,

err_msg="Distances don't match " "for metric haversine",

)

開發者ID:lmcinnes,項目名稱:umap,代碼行數:20,

示例5: make_propensity_lists

​點讚 6

# 需要導入模塊: from sklearn import neighbors [as 別名]

# 或者: from sklearn.neighbors import BallTree [as 別名]

def make_propensity_lists

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,根据您提供的代码,我们可以使用KNN和决策树模型来建立分类模型,并分析模型的准确率。 KNN模型: KNN模型是一种基于实例的分类算法,它的基本思想是将新样本与训练集的样本逐一比较,然后将最相似的K个样本的类别作为预测结果。在sklearn库,KNeighborsClassifier类就是KNN模型的实现。下面是示例代码: ```python from sklearn import neighbors knn = neighbors.KNeighborsClassifier() knn.fit(X_train, y_train) y_pred_knn = knn.predict(X_test) acc_knn = knn.score(X_test, y_test) print("KNN Accuracy:", acc_knn) ``` 在拟合数据之后,我们可以使用predict()方法来进行预测,使用score()方法来计算准确率。需要注意的是,KNN模型的K值需要根据实际情况进行调整,过小的K值容易导致过拟合,过大的K值容易导致欠拟合。 决策树模型: 决策树模型是一种基于树形结构的分类算法,它的基本思想是将数据划分为多个小区域,每个小区域都对应一个分类。在sklearn库,DecisionTreeClassifier类就是决策树模型的实现。下面是示例代码: ```python from sklearn import tree dtc = tree.DecisionTreeClassifier() dtc.fit(X_train, y_train) y_pred_dtc = dtc.predict(X_test) acc_dtc = dtc.score(X_test, y_test) print("Decision Tree Accuracy:", acc_dtc) ``` 在拟合数据之后,我们可以使用predict()方法来进行预测,使用score()方法来计算准确率。需要注意的是,决策树模型容易出现过拟合的情况,因此需要使用交叉验证等技术来避免过拟合。 希望以上内容能够帮助您分析模型的准确率,如果还有疑问,欢迎继续提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值