酶促反应动力学_代谢(1):酶动力学基础——米氏方程、抑制剂和多底物反应动力学...

本文介绍了酶促反应动力学的基础,重点讲解了米氏方程的推导过程及其不同图象表示方法,包括常规作图、Lineweaver-Burk作图法、Eadie-Hofstee作图法和Hanes-Woolf作图法,旨在为理解酶的催化机制提供理论支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

这是本人写的第一篇推文,此前一直在纠结是做细胞信号转导专题还是生化代谢专题。最近读了一本生化代谢图谱——Wiley出版社出版的BiochemicalPathways: An Atlas of Biochemistry and Molecular Biology。其作者Gerhard Michal开发的“生化途径”挂图很为出名,并在国际上实验室被广泛使用。受其影响,我决定把此公众号推出的第一个专题交给生化代谢。

869e33defdc5b9f7b316edf2c518191e.png

写到生化代谢,我觉得仅仅介绍物质代谢(比如糖酵解等通路)以及能量代谢是不够的。为了使我介绍的生化代谢知识体系更加完备,我决定从催化代谢反应的物质——酶(enzyme)说起,从酶动力学、酶的催化机制、别构酶等这些酶学角度切入进去,等到介绍完这些学习代谢应具备的理论知识后,我们再开始代谢生物化学的内容。


米氏方程的推导

       酶在催化的过程中会先与底物结合形成酶-底物复合物(enzyme-substrate complex, ES),所以当底物浓度达到一定量时,所有的酶分子就会结合上底物,从而使酶饱和。这就可以解释为什么米氏酶具有饱和现象了。所以,米氏酶催化的(单底物)反应式应为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值