多元线性回归算法python实现_手写算法-Python代码推广多元线性回归

1、梯度下降-矩阵形式

上篇文章介绍了一元线性回归,包括Python实现和sklearn实现的实例、对比,以及一些问题点,详情可以看这里:

链接: 手写算法-Python代码实现一元线性回归

里面封装的one_variable_linear()类只适用于一元线性回归,

本篇文章修改代码,推广至多元线性回归,并介绍2种更简洁的方法。

先给大家复习一下矩阵的基本知识:

转置矩阵:

损失函数可表示为:

可以求得:矩阵形式下,偏导的表达式是:

下面附上我的推导证明过程(刚写的):

有了上述表达式,我们修改上次的代码如下:

class linear():

def __init__(self):

pass

#梯度下降法迭代训练模型参数,x为特征数据,y为标签数据,a为学习率,epochs为迭代次数

def fit(self,x,y,a,epochs):

#计算总数据量

m=x.shape[0]

#给x添加偏置项

X = np.concatenate((np.ones((m,1)),x),axis=1)

#计算总特征数

n = X.shape[1]

#初始化W的值,要变成矩阵形式

W=np.mat(np.ones((n,1)))

#X转为矩阵形式

xMat = np.mat(X)

#y转为矩阵形式,这步非常重要,且要是m x 1的维度格式

yMat =np.mat(y.reshape(-1,1))

#循环epochs次

for i in range(epochs):

W=W-a*xMat.T*(xMat*W-yMat)

return W

def predict(self,x,w): #这里的x也要加偏置,训练时x是什么维度的数据,预测也应该保持一样

return np.dot(x,w)

依然用上次的测试数据集,2个代码比较如下:

import numpy as np

import pandas as pd

from sklearn import datasets #sklearn生成数据集都在这里

from matplotlib import pyplot as plt

#生成一个特征的回归数据集

x,y=datasets.make_regression(n_features=1,noise=15,random_state=2020)

plt.scatter(x,y)

plt.show()

class one_variable_linear():

#初始化参数,k为斜率,b为截距,a为学习率,n为迭代次数

def __init__(self,k,b,a,n):

self.k =k

self.b=b

self.a=a

self.n = n

#梯度下降法迭代训练模型参数

def fit(self,x,y):

#计算总数据量

m=len(x)

#循环n次

for i in range(self.n):

b_grad=0

k_grad=0

#计算梯度的总和再求平均

for j in range(m):

b_grad += (1/m)*((self.k*x[j]+self.b)-y[j])

k_grad += (1/m)*((self.k*x[j]+self.b)-y[j])*x[j]

#更新k,b

self.b=self.b-(self.a*b_grad)

self.k=self.k-(self.a*k_grad)

#每迭代10次,就输出一次图像

if i%10==0:

print('迭代{0}'.format(i)+'次')

plt.plot(x,y,'b.')

plt.plot(x,self.k*x+self.b,'r')

plt.show()

self.params= {'k':self.k,'b':self.b}

#输出系数

return self.params

#预测函数

def predict(self,x):

y_pred =self.k * x + self.b

return y_pred

lr=one_variable_linear(k=1,b=1,a=0.1,n=60)

lr.fit(x,y)

旧代码得到的参数如上,

新代码得到的参数如下:

model = linear()

w = model.fit(x,y,a=0.1,epochs=50)

print(w)

我的天,这是什么鬼,怎么和上面的差的这么多(其实是我故意的),明显这个是不正确的,模型完全没有收敛,问题在哪里?

我们细想一下,正常的梯度下降法,前面是带m的,而矩阵形式,我们直接约掉了m,相当于学习率就被放大了m倍,所以这里学习率a应该设置为a/m=0.001,这样a就相等了,迭代次数也相等,冥冥中感觉这次的系数应该是一样的才对。再跑一下代码:

w = model.fit(x,y,a=0.001,epochs=50)

print(w)

哈哈,完全一样,破案了,这里也解释了,之前说的,为什么损失函数前面1/2m这个值,其实对模型的参数没有影响,

但是你的学习率要选择得对,不能可能无法收敛。

现在这个类就是Python线性回归代码的一般式了,设置合理的学习率和迭代次数,就会得到不错的结果。

2、标准方程法

下面来介绍第二种方法,标准方程法。

有了前面的铺垫,这里就很容易理解了,损失函数:

因为这是一个凸函数,因此一定有极小值。根据最小二乘法的原理,我们要对这个损失函数对θ向量求导取0。结果如下式:

这个推导过程中也可以看到,1/2m对最终的系数没有影响,可以直接被约掉。

编写标准方程法代码如下:

class normal():

def __init__(self):

pass

def fit(self,x,y):

m=x.shape[0]

X = np.concatenate((np.ones((m,1)),x),axis=1)

xMat=np.mat(X)

yMat =np.mat(y.reshape(-1,1))

xTx=xMat.T*xMat

#xTx.I为xTx的逆矩阵

ws=xTx.I*xMat.T*yMat

return ws

model =normal()

model.fit(x,y)

求出来的参数为:

这里要注意:XTX的逆矩阵不是什么时候都可以求得出来的,以下情况求不到XTX的逆矩阵:

1、特征数据高度线性相关;

2、n >>m,即特征数量大于样本数量,此时为非满秩矩阵;

sklearn实现对比标准方程法

from sklearn.linear_model import LinearRegression

LR=LinearRegression()

LR.fit(x,y)

LR.intercept_,LR.coef_

和编写的标准方程法得到的参数一模一样,这里回答了之前说过为什么梯度下降法得到的参数和sklearn里面得到的参数不一样的问题,也说明了sklearn中封装的是标准方程法,毕竟真的简单!

下篇介绍非线性回归,当数据表现为非线性时,该怎么处理。

本文地址:https://blog.csdn.net/weixin_44700798/article/details/110452229

如您对本文有疑问或者有任何想说的,请点击进行留言回复,万千网友为您解惑!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值