拓展 欧几里得算法 求逆元_算法学习笔记(33): 拓展欧拉定理

本文介绍了欧拉定理的基本概念,包括其基本形式和在算法竞赛中的应用。着重讲解了欧拉函数和费马小定理,并阐述了拓展欧拉定理的推论,用于处理与不互质的情况。文章还通过群论的角度给出了欧拉定理的证明,并展示了如何在代码中灵活运用。
摘要由CSDN通过智能技术生成

56ef200d4bf3acc93b80e542f9ceeecd.png

欧拉定理是数论中一个非常重要的定理:若正整数

互质,则

这里的

是欧拉函数,即小于或等于
且与
互质的正整数个数。当
是质数
时,欧拉定理退化成费马小定理

我们稍后再来证明欧拉定理。在算法竞赛中,我们常常会用到它的一个重要的推论:若正整数

互质,则

(这是因为

利用这个推论,即使

比较大,我们也可以轻松地计算
的值,但需要满足
互质的前提。

为了解决

不互质时的此问题,我们引入
拓展欧拉定理:若
,则:

这里仍有前提条件,但影响不大,因为

时直接用快速幂计算即可。

互质时,由于
式显然成立。

不互质时,我们考虑把
质因数分解
,我们只需要证明对于每个
,都有
即可。因为如果设
互质,且
同时
,则
必成立(
既是
的倍数又是
的倍数),所以这里可以进行合并。

现在再分类讨论

  • ,则 :

(注意到

必然是
的倍数,因为欧拉函数是
积性函数
  • ,则
    必然是
    的倍数
    。设
    ,注意到
    ,可以证明
    。则:

所以

的因数,也是
的因数,即:

综上,

代码实现时可以边读入边取模,另外一定要注意这个式子仅在

时成立。
#include 

附:欧拉定理的群论证明

欧拉定理的初等证明这篇博客讲得很清楚了。这里讲一个我觉得很有意思的群论证明。(需要一点点抽象代数基础)

是正整数,则小于
且与
互质的正整数组成集合
,又设
,则代数系统
满足:
  • 封闭性,因为
    ,故
    必与
    互质
  • 结合律,这是显然的
  • 存在单位元
  • 对于每个元素
    必存在逆元。即模
    的乘法逆元(注意
    互质,故乘法逆元必存在)

所以该代数系统是。这个群的阶数

,根据群论的
拉格朗日定理有限群的阶数是群中元素的阶数的整数倍,取任意
,设
的阶数是
,于是
,所以
。证毕。

Pecco:算法学习笔记(目录)​zhuanlan.zhihu.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值