使用函数求素数和_素数定理

e1701fce34461c7fb9a62699ddbbf186.png

序言

上篇文章梳理了 Dirichlet 定理的证明,干脆一鼓作气,把素数定理(PNT)的证明也厘清好了;如果说我来到这个世界上有什么心愿的话的,那么我最想知道的就是素数定理的证明。

素数定理

其中

表示不超过
的素数个数.

符号说明

对于复变量

分别为其实、虚部

证明思路

  • 重要角色

伟大的 Tchebychev 引入了一个与素数定理相关,同时又是方便使用解析工具的函数,

这实际上是一个“特征函数”的拣择的结果,

我们对该和式进行合并同类项,也即是说,将具有相同系数

的项合并,这是易于计算的,因为

并且在求和的过程中,只有素数的参与,其余的项皆为 0,那么

而接下来只需要证明一个事实,素数定理就可以得到证明,那就是

命题 1

若成立

,则素数定理成立.

证明

只需证明下式即可,

实际上这个不等式的证明只需要非常粗糙的放缩就可以解决。先证明后一个不等号,

此处暗示了

成立的可能性。最后证明该结论的第二个部分,这里需要一点小的技巧,先固定
,于是

整理,

注意到一个平凡的事实

,放缩并且不等式两边同时除以

因为

具有任意性,由极限的保号性可得最终结论。

Q. E. D

证明

  • 解析之路

好了,现在聚光灯全部笼罩在

的上空,因为它俨然是证明素数定理的重要角色。不过,想要借用解析工具似乎还是有一段距离,我们知道,Euler 恒等式或是 Riemann 的
函数迄今为止是对素数最好的解析描述了,如果能与之建立关系,则成功指日可待。不过这段“关系”真可谓“九曲回肠”——

等式两边同时对

求导,

终于看到一点希望了。为了行文流畅,以便对接下来的工作得到合理的解释,我终于在此处才引入了另一个重要的函数(实际上早该引入了),

它与

当然是有关系的,通过
可知

其中

此关系成立是显然的。于是有

下面只剩下

的关系了。如果我直接告诉你,你一定觉得我疯了——

命题 2

别急,其实证明反而很简单,我们先来说明一个积分。

引理 1

构造围道如下图

8e7840870a2da735e29bc1c95912d69e.png
图 1

围道

由两部分构成,分别为
,沿逆时针方向为正方向。由留数公式可知:

其中

又因为

,等式右边第一项即为所求,而第二项趋于 0 :

,又因为
所以

则可得

对于此种情况,依然可以做围道积分,只是围道半环分布在

的右侧,由于被积函数在该区域全纯,所以积分为 0.

Q. E. D

接下来我们就利用引理 1 可以证明命题 2 了。

证明

Q. E. D

得到了

的解析表达式,事实上命题就转换为——

命题 3

,则
,也就是素数定理成立.

证明

由于

是单调递增的,则有

我们看后一个不等式,

假如题设为真,则

蕴涵着

再由

的任意性,即可证明
;类似地,也可证明
,命题得证。

Q. E. Q

所有的的矛头指向了

以及它的解析表达式,
接下来的目标,就是我们将命题 2 中的积分项强行分离出主阶
,然后说明剩余的项都是低阶的。而素数定理的最难的部分也正是这里,因为它要求我们对
函数的性质要有更深入的理解。
  • 技术核心

此节比较繁琐,建议先默认其中的结论,然后跳过阅读。等到大致思路搞清后,在会过来推敲其中细节。

函数在
的半平面内全纯,这是显而易见的事,而 Riemann 最非凡的创举是将 它解析延拓为复平面上的亚纯函数,并且
是它唯一的单极点。看看 Riemann 解析延拓的过程,就知道一流数学家的脑洞非同凡响——

命题 4

其中

证明

首先 Riemann 注意到了

两函数之间的关联

这显然是经过换元

得到的;我们发现等式右边出现了
,只需等式两边对
求和,右边即可得到
,而左边出现了
,因为

代入原式

Q. E. D

接着, Riemann 看到了

函数的对称性,

命题 5

是复平面上的亚纯函数,
是它的两个单极点,并且

证明

这个证明用到了关于

函数的恒等式:

它成立的依据是 Poisson 求和公式

带入求和即可得。如此一来,我们将该恒等式用到命题 4 当中,就会分离出极点。为了方便,记

恒等式可得

于是有

由此式立即可以验证

关于
的对称性,两个单极点也浮出水面,只不过需要验证后面的积分函数在
上全纯。关于这一点是肯定的,因为
(也就是
)是以指数型递减至无穷,

Q. E. D

如此一来,我们用

就可以研究
的解析性质就十分显然了。因为

已知

的 1 阶零点是
,而正好与
的单极点
约去,所以
唯一的单极点只是
;在而
附近
增长的性质的研究,对于后面证明素数定理所需要的估值至关重要。顺便说句题外话,对于
的非平凡零点(非负偶数点), Riemann 认为它们分布在临界线
,这就是所谓的 Riemann 猜想。

命题 6

其中

在右半平面全纯。

证明

由微分中值定理,

于是

在右半平面一致收敛,令

Q. E. D

我们接下来可以使用该命题来展示几个重要的估值。

引理 2

,使得

(i)

(ii)

证明

(i)利用

之前提到过的两个估值:

由此可以放缩为

于是选取适当的

,应用命题 6,发现

(ii) 对于

的估值而言,利用 Cauchy 积分公式

只需令

,观察到积分圆在半平面
上,利用 (i) 即可得到 (ii)

Q. E. D

该定理反映了

控制着,对于任何一个
;即便在这根线的附近,其增长也是可控的。

命题 7

无零点

证明

我们需要先说明一个事实,最后由反证法得出矛盾。如果

,于是

这是因为

,代入右式有,

其中,

有了这个非负的论断,我们就可以在

)这个假设下,得到完全相反的结论,故完成命题 7。

因为

解析,于是该点至少为 1 阶零点,则

因为

的单极点,于是有

解析,于是在该点局部有界。综上三点,我们得出

其对数必为负,当

充分靠近 1 时,矛盾!

Q. E. D

然后是本节最后一个引理。

引理 3

,当
,则有

证明

由上一个定理论证,我们知道

变形,再由引理 2

接下来,考虑两种情况,

代入不等式继续放缩则得

替换为
即可满足引理;

我们选择较大的

来替换
,且满足
,于是由三角不等式

而后一项由中值定理来控制

于是由

别忘记我们的假设

选择系数

,于是得到

替换为
,证明完毕!

Q. E. D

  • 最后一战

我们将要展现命题 3 的正确性,而它的证明需要两个事实作为支撑:

直观上讲,我们希望得到的阶是

,而被积函数中却是
,如果我们可以让
充分靠近
,并且达到该点,那么就达到我们的目的了,下面我们详细展开。

证明

固定

,与此同时也固定好
,我们记被积函数为

我们对原本竖直的积分路径(

)做一些变形为

53bc6b49e0f583b44ad0ea97d2da5573.png
图 2

像通常利用 Cauchy 定理的方式一样,我们猜测

由引理 2、引理 3 这是成立的。固定任何

,当

于是积分在两个路径上收敛。

紧接着,考虑另一个积分路径

,选取足够小的
,使得
在下面的区域里无零点,

72325de6db61e22326bc23f8f77e6578.png
图 3

这是可以做到的,因为

在直线
上非零(命题 7)。

于是,

有一个单极点
,由引理 4,可知
的留数为
,即

0c3c913b528794f091d5da179c30c26e.png
图 4

接下来只需要对积分在

的积分进行逐段估值即可,分段标号如图 3。

充分大时,有结论

这是因为当

由引理 3 可知

,于是

由于此积分收敛,所以当

充分大时,可以任意小,于是不等号右边
;同理可得
的情况。

固定

,选择充分小的
,在
上时会有

又之前的引理可知存在

(依赖于
),满足

在这里,我们得到的结果是

同理。

终于来到最后一步估计,结合前面的所有转化和估计,即可完成证明,

Q. E. D

拔剑四顾心茫然……

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值