python线性加权回归_loess局部加权回归Python代码

=lwlr(testArr,xArr,yArr,k)

return yHat

xArr,yArr = loadDataSet('ex.txt')

#xArr = loadtxt('/disk5/lzb/sunying/scatter_20yr/pr-x.txt')

#yArr = loadtxt('/disk5/lzb/sunying/scatter_20yr/pr-y.txt')

print ("k=1.0:",lwlr(xArr[0],xArr,yArr,1.0))

print ("k=0.001:",lwlr(xArr[0],xArr,yArr,0.001))

print ("k=0.003:",lwlr(xArr[0],xArr,yArr,0.003))

#画图

def showlwlr():

yHat = lwlrTest(xArr, xArr, yArr, 0.003)

xMat = mat(xArr)

srtInd = xMat[:,1].argsort(0)

xSort = xMat[srtInd][:,0,:]

fig = plt.figure() #创建绘图对象

ax = fig.add_subplot(111)  #111表示将画布划分为1行2列选择使用从上到下第一块

ax.plot(xSort[:,1],yHat[srtInd])

#scatter绘制散点图

ax.scatter(xMat[:,1].flatten().A[0],mat(yArr).T[:,0].flatten().A[0],s=2,c='red')

plt.show()

showlwlr()

报错信息:this matrix is singular,cannot do inverse

this matrix is singular,cannot do inverse

this matrix is singular,cannot do inverse

this matrix is singular,cannot do inverse

this matrix is singular,cannot do inverse

this matrix is singular,cannot do inverse

this matrix is singular,cannot do inverse

读入的数据'ex.txt'是

1.000000        0.2690527        -0.001646584

1.000000        0.2954022        0.1238775

1.000000        0.2909003        -0.05472248

1.000000        0.2646619        -0.07170648

1.000000        0.2431909        -0.09840683

1.000000        0.2797779        0.007707621

1.000000        0.2724597        0.05066166

1.000000        0.2758838        -0.009732046

1.000000        0.2798901        -0.1534021

1.000000        0.2807672        -0.1282553

1.000000        0.2614075        -0.07972595

1.000000        0.2743964        -0.02874548

1.000000        0.2503992        -0.1353439

1.000000        0.1714569        -0.2294806

1.000000        0.04798097        -0.3665651

1.000000        0.06015016        -0.1344432

1.000000        0.03959535        0.04808203

1.000000        0.08010011        -0.1170028

1.000000        0.08165712        -0.1655375

1.000000        0.03176637        -0.2797517

1.000000        0.07593446        -0.1432897

1.000000        0.1295404        -0.07015182

1.000000        0.1928027        -0.1948421

1.000000        0.2250586        -0.1112877

1.000000        0.260904        -0.1982028

1.000000        0.2580951        -0.1082056

1.000000        0.3004584        -0.04234913

1.000000        0.2967188        -0.02759912

1.000000        0.3631018        -0.04297901

1.000000        0.4124005        0.01313069

1.000000        0.4163599        -0.1504389

1.000000        0.4693945        -0.1199375

1.000000        0.4037305        0.01099413

1.000000        0.3453302        -0.1980881

1.000000        0.4089026        -0.1234809

1.000000        0.4242572        -0.0564435

1.000000        0.4985657        -0.1687974

1.000000        0.5441779        -0.1587868

1.000000        0.5810352        -0.0530166

1.000000        0.6546307        -0.164349

1.000000        0.7011005        -0.113253

1.000000        0.6691455        -0.1333736

1.000000        0.4406342        -0.1927065

1.000000        0.4644074        -0.1827072

1.000000        0.5041645        -0.1699146

1.000000        0.6426361        -0.008793893

1.000000        0.7339722        -0.09469118

1.000000        0.7987915        -0.04628391

1.000000        0.8668793        -0.02125628

1.000000        0.9305609        0.03831121

1.000000        0.9887042        0.05882955

1.000000        0.9985553        0.02848571

1.000000        1.044725        0.07723319

1.000000        1.115700        0.06708035

1.000000        1.157659        -0.09891472

1.000000        1.170163        0.05359491

1.000000        1.201005        0.06594299

1.000000        1.206708        0.04018773

1.000000        1.281634        0.09678216

1.000000        1.300016        -0.09687274

1.000000        1.318334        0.07383142

1.000000        1.374397        0.1372537

1.000000        1.439332        0.0788305

1.000000        1.469289        -0.007136605

1.000000        1.492446        0.02735374

1.000000        1.535245        0.09715249

1.000000        1.574530        -0.1475203

1.000000        1.587145        -0.003214587

1.000000        1.618475        0.1681613

1.000000        1.629144        0.07992561

1.000000        1.694170        0.04280506

1.000000        1.746714        0.08608485

1.000000        1.772911        0.08603626

1.000000        1.801633        0.02927345

1.000000        1.857291        0.1741208

1.000000        1.913522        0.08095916

1.000000        1.955875        0.2327352

1.000000        1.970507        0.12446

1.000000        2.035365        0.04954539

1.000000        2.096785        0.2015546

1.000000        2.109739        0.2633146

1.000000        2.132035        0.2311534

1.000000        2.155673        0.1254212

1.000000        2.268190        0.2871278

1.000000        2.300741        0.377954

1.000000        2.344852        0.4841966

1.000000        2.406571        0.2762064

1.000000        2.454569        0.3223111

1.000000        2.506483        0.4164303

1.000000        2.561117        0.4518343

1.000000        2.607687        0.3644027

1.000000        2.634192        0.285948

1.000000        2.668698        0.3624722

1.000000        2.741822        0.3612472

1.000000        2.772562        0.3880408

1.000000        2.804566        0.3555022

1.000000        2.864974        0.5396597

1.000000        2.918063        0.4457485

1.000000        2.978275        0.5346702

1.000000        3.036667        0.4766079

1.000000        3.095585        0.6484076

1.000000        3.158454        0.6802605

1.000000        3.217654        0.4886608

1.000000        3.257523        0.6309823

1.000000        3.276222        0.5082104

1.000000        3.310760        0.6470503

1.000000        3.388524        0.5208067

1.000000        3.461133        0.6910182

1.000000        3.510771        0.5201572

1.000000        3.577636        0.646807

1.000000        3.618009        0.7583407

1.000000        3.686428        0.5603041

1.000000        3.739355        0.7154951

1.000000        3.785264        0.5994745

1.000000        3.849101        0.8402539

1.000000        3.890382        0.8681579

1.000000        3.953280        0.9398329

1.000000        4.002823        0.7048933

1.000000        4.040903        0.8129911

1.000000        4.113554        0.801637

1.000000        4.179027        0.9570037

1.000000        4.222798        0.8394619

1.000000        4.285365        0.9481013

1.000000        4.361596        0.9880667

1.000000        4.395833        1.045621

1.000000        4.419237        0.9276648

1.000000        4.474612        0.9854791

1.000000        4.534513        0.8925385

1.000000        4.600213        0.9968973

1.000000        4.651669        1.015769

1.000000        4.692225        0.9166655

1.000000        4.768079        1.017643

1.000000        4.840543        1.292384

1.000000        4.902685        1.087071

1.000000        4.972134        1.129415

1.000000        5.035988        1.184613

1.000000        5.075732        1.074397

1.000000        5.129654        1.083988

1.000000        5.197710        1.056617

1.000000        5.225694        0.9570371

1.000000        5.269509        1.238351

1.000000        5.354656        1.192033

1.000000        5.413908        1.181873

1.000000        5.431566        1.150368

1.000000        5.507626        1.396955

1.000000        5.572452        1.314763

1.000000        5.619345        1.192607

1.000000        5.690846        1.457747

1.000000        5.761062        1.398177

1.000000        5.794088        1.311191

1.000000        5.839091        1.314177

出图:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值